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ARTICLE INFO ABSTRACT

Article history: Data-driven approaches have achieved great success in various medical image analy-
sis tasks. However, fully-supervised data-driven approaches require unprecedentedly
large amounts of labeled data and often suffer from poor generalization to unseen new
2000 MSC: 41A05, 41A10, 65DO05, data due to domain shifts. Various unsupervised domain adaptation (UDA) methods
65D17 have been actively explored to solve these problems. Anatomical and spatial priors in
medical imaging are common and have been incorporated into data-driven approaches
: ; to ease the need for labeled data as well as to achieve better generalization and inter-
tation, Prior Knowledge, 3D/2D, Trans- A ) . N N
former, Pneumonia, Chest CT, Chest pretation. Inspired by the effectiveness of recent transformer-based methods in medi-
X-ray cal image analysis, the adaptability of transformer-based models has been investigated.
How to incorporate prior knowledge for transformer-based UDA models remains under-
explored. In this paper, we introduce a prior knowledge-guided and transformer-based
unsupervised domain adaptation (PUDA) pipeline. It regularizes the vision transformer
attention heads using anatomical and spatial prior information that is shared by both the
source and target domain, which provides additional insight into the similarity between
the underlying data distribution across domains. Besides the global alignment of class
tokens, it assigns local weights to guide the token distribution alignment via adversar-
ial training. We evaluate our proposed method on a clinical outcome prediction task,
where Computed Tomography (CT) and Chest X-ray (CXR) data are collected and used
to predict the intubation status of patients in a week. Abnormal lesions are regarded as
anatomical and spatial prior information for this task and are annotated in the source
domain scans. Extensive experiments show the effectiveness of the proposed PUDA
method.

Keywords: Unsupervised Domain Adap-
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1. Introduction

Data-driven machine learning approaches have been over-
whelmingly successful in a variety of medical image anal-
ysis tasks Ronneberger et al. (2015); Litjens et al. (2017);
Shen et al. (2017) and have proven more powerful and accu-
rate than their model-driven counterparts. However, such im-
pressive achievements rely heavily on massive amounts of la-
beled data, which is often costly and time-consuming to ob-
tain. Besides, data-driven models, particularly deep learning,
often suffer from poor generalization to unseen new data and
unclear interpretability. This situation motivates research on
semi-supervised learning Van Engelen and Hoos (2020), un-
supervised learning Raza and Singh (2021), and unsupervised
domain adaptation (UDA) Wang and Deng (2018); Wilson and
Cook (2020).

Most UDA work seeks to alleviate domain divergence. The
mainstream approaches tend to learn domain-invariant features
by performing alignment across different distributions by ad-
versarial learning Ganin and Lempitsky (2015). Despite recent
advances, UDA remains a challenging task due to the large do-
main shifts for many real-world applications.

In many real-world applications, especially medical imaging,
prior knowledge is often widely available and can provide in-
sights into the underlying structure of the data across domains.
Manual annotation requires prior knowledge of anatomy and
clinical expertise regarding the disease. This process exploits
anatomical and spatial similarity across patient scans. Explic-
itly employing this prior knowledge has been explored in CNN-
based deep-learning approaches. One of the popular strategies
is to add a shape prior constraint Oktay et al. (2017) to encour-
age segmentation results to match both the ground truth and
the shape prior. More recent work often exploits such prior
information in deep learning models to reduce the use of la-
beled data via semi-supervised learning, unsupervised learning,
and self-supervised learning Zhou et al. (2019); Dalca et al.
(2018); Miao et al. (2022). As for UDA, Sun et al. (2022a)
introduces prior knowledge of target class distribution to guide
UDA. There are a few works Bateson et al. (2022); Zhang et al.
(2022); Yao et al. (2022) to incorporate shape priors for medical
image segmentation under the UDA setting.

Most above methods are based on CNN backbones. Recent
transformers have achieved great success on various machine
learning tasks. Some works investigate the UDA with trans-
former backbones, such as Yang et al. (2023); Xu et al. (2021);
Sun et al. (2022b). How to incorporate prior knowledge for
transformer-based UDA models remains under-explored.

This paper introduces a prior knowledge-guided and
transformer-based unsupervised domain adaptation (PUDA)
pipeline. To validate the effectiveness of the proposed pipeline,
we focus on an important application of clinical outcome pre-
diction. The early prediction of severity in COVID-19 pa-
tients is of vital importance for providing rapid and essential
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care to reduce mortality and optimize the use of medical re-
sources Guner et al. (2021). More specifically, we collected
both chest X-ray (CXR) and chest computed tomography (CT)
from COVID-19 patients on day 0 and our goal is to achieve
UDA on the task to predict if the patient will be intubated in
one week from the time of imaging. Intubation labels are bi-
nary and generated from electronic health records. Abnormal
regions in both CXR and CT scans are assumed to represent the
shared prior knowledge.

CXR imaging is among the most commonly used diagnos-
tic tools in clinical practice and has an essential role in the di-
agnosis of lung diseases, such as pneumonia, tuberculosis, in-
terstitial lung disease, and early lung cancer Qin et al. (2018).
Compared to chest CT, CXR is achieved with lower radiation
doses and is much more available in almost all clinical set-
tings due to its fast and low-cost acquisition Inui et al. (2021).
While CXR is more available, it may be deemed less useful
than chest CT due to its low sensitivity in the diagnosis of sub-
tle parenchymal abnormalities and its limited ability to help
differentiate parenchymal patterns Schaefer-Prokop and Prokop
(2021). Chest CT carries more detailed information in infected
regions while the projective nature of CXR causes large over-
lapping of anatomies, blurry object boundaries, and complex
texture patterns. In contrast to CT scans, chest X-rays (CXR)
can be performed frequently, even on severely ill patients, as
portable CXR can be conducted within the ICU. This capa-
bility allows for significantly improved temporal monitoring of
disease progression. It is thus of clinical interest to perform do-
main adaptation across CXR and CT images for various appli-
cations. Specifically, in our application of predicting intubation
at seven days for COVID-19 patients, though using standard-
ized severity criteria has contributed to reduced ICU overload
Carbonell et al. (2021), a key challenge is that not all hospitals
possess advanced imaging, such as CT, for this purpose. Certain
hospitals, particularly in low-resource settings, depend solely
on chest X-rays (CXR) to decide admission. To connect 3D
CT scans and CXR scans, we generate digitally reconstructed
radiographs (DRRs) from CT scans Unberath et al. (2018).
Anatomical regions or lesions related to infection, such as lung,
consolidation (CON), and ground glass opacity (GGO) are re-
garded as useful clinical prior knowledge for domain adaptation
in our prediction task.

The contributions of our approach are as follows: (1) We pro-
pose a transformer-based UDA framework that utilizes shared
anatomical and spatial priors across domains for medical im-
age analysis. (2) The proposed method effectively regularizes
the attention heads in the vision transformer guided by prior
knowledge and improves both the discriminability and trans-
ferability of the learned features. Besides the global alignment
of class tokens, the regularized attention guides the adversar-
ial alignment of the distribution of sequential features. (3) Our
knowledge-guided model incorporating domain expertise pro-
duces a more reasonable attention map along with the predic-
tion results, thus leading to a better understanding of the deep
learning model. (4) In addition, the proposed model performs
favorably compared with human radiologists on the same intu-
bation prediction task.
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The rest of the paper is organized as follows. Related work is
summarized in Sec. 2. The details of the method are described
in Sec. 3. The experimental design and results are shown in
Sec. 4. Finally, the work is concluded in Sec. 5.

2. Related work

2.1. Intubation Prediction

Covid-related machine learning works on medical imaging
extensively focus on the diagnosis and assessment of COVID-
19 patients with CT scans and CXR scans Bhatele et al. (2022);
Alghamdi et al. (2021); Serte and Demirel (2021). Some works
for COVID-19 mortality and intubation prediction are based on
CT scans Chamberlin et al. (2022) and a few are based on CXR
scans Kwon et al. (2020); Nakashima et al. (2023). Specifi-
cally, Kwon et al. (2020) utilizes both image features and clin-
ical variables, and Nakashima et al. (2023) uses CXR for mor-
tality prediction based on radiomics features combined with a
bone-suppressing approach. In this work, we collect both CT
and CXR scans and investigate an unsupervised domain adap-
tation model for the intubation prediction task by leveraging
expert lesion labels across different image modalities.

2.2. Prior Knowledge

Incorporating domain expertise and prior knowledge into
data-driven approaches is of particular interest for medical im-
age analysis. Most related work focuses on utilizing anatomical
and spatial priors for biomedical segmentation tasks. A pop-
ular method is to apply conditional random fields (CRFs) on
the output of deep learning models in post-processing to take
into account the context of neighboring labels. In particular, as
pathology shows that most breast cancer originates from cells
in the mammary layer, Huang et al. (2018) exploits the posi-
tion of tumors and their relative locations with the mammary
layer as a new term in a CRF energy function to refine the seg-
mentation result from neural networks. Some supervised learn-
ing methods add a shape prior constraint (Oktay et al., 2017)
to encourage the segmentation prediction to match the shape
prior. More recent works often exploit such prior information
to reduce the need for labeled data in various settings. Zhou
et al. (2019) utilizes organ prior statistics via a prior-aware loss
for partially-supervised organ segmentation. Following classi-
cal atlas-based probabilistic segmentation methods, Dalca et al.
(2018) proposes a generative model that achieves fast unsuper-
vised segmentation with anatomical priors. Miao et al. (2022)
proposes spatial prior attention for better self-supervision train-
ing and improves the performance on downstream classifica-
tion tasks. Inspired by Miao et al. (2022), our prior guided
attention regularization embeds anatomical and spatial priors
into the attention heads in vision transformers. Instead of self-
supervision, we assume this anatomical and spatial domain ex-
pertise is not only shared across scans but also across differ-
ent imaging modalities. Different from Miao et al. (2022), our
model requires learning representations that are not only dis-
criminative but also transferable across domains. It is proposed
to combine the global and weighted local transfer loss with the
spatial prior attention to learn transferable representations.

2.3. Vision Transformer

Attention-based transformers Vaswani et al. (2017) were ini-
tially proposed to model sequential data. Dosovitskiy et al.
(2020) showed the state-of-the-art performance by transformer-
based models on vision tasks. Since then, vision transform-
ers (ViTs) have become increasingly popular and efforts have
been made to improve their performance. Many ViTs and their
variants are proposed to achieve remarkable performance on
various vision tasks, including image classification Chen et al.
(2021); Chu et al. (2021); Li et al. (2022b), object detection
Beal et al. (2020); Fang et al. (2021); Li et al. (2022a), and
semantic segmentation Strudel et al. (2021); Hatamizadeh et al.
(2021); Gueetal. (2022). In our work, to better leverage the prior
domain expertise knowledge, we utilize the attention mecha-
nism in vision transformer to infuse expert knowledge. More
specifically, the attention regularization framework explicitly
enforces the embedding to incorporate the shared anatomical
and spatial priors.

2.4. Unsupervised Domain Adaptation

UDA has attracted a lot of attention as it greatly improves the
generalization ability of deep learning models to unseen new
data. Various deep learning-based UDA methods have been ex-
plored Wang and Deng (2018). Discrepancy-based methods di-
minish the domain shift via fine-tuning the neural networks with
unlabeled target data. Commonly used divergence measures
include Maximum Mean Discrepancy (MMD) Tzeng et al.
(2014) and Correlation Alignment (CORAL) Sun and Saenko
(2016). Adversarial-based works utilize domain discriminators
to encourage domain confusion through an adversarial objective
Ganin and Lempitsky (2015); Tzeng et al. (2017). The pursuit
of domain invariance of learned representations might result in
negative transfer, i.e. transferring knowledge from the source
can have a negative impact on the target learner. Since not all
features are equally transferable, recent methods seek to learn
more transferable features while preserving the discriminative
ability of these features Wang et al. (2019).

In many real-world applications, while UDA remains a chal-
lenging task due to the large domain shifts, prior knowledge
is often widely available. Such prior knowledge about data
across domains provides valuable clues that are complementary
to the unlabeled training data. Thus, knowledge-guided UDA
has been explored. Sun et al. (2022a) incorporates prior knowl-
edge on target class distribution to guide the UDA. There are
different types of prior knowledge for UDA to consider. Specif-
ically in the medical domain, some works primarily focus on
the UDA for segmentation tasks with shape priors. For exam-
ple, Bateson et al. (2022); Zhang et al. (2022); Yao et al. (2022)
introduce shape constraints to improve medical image segmen-
tation under UDA settings. Bigalke et al. (2023) proposes to
embed anatomy prior knowledge for 3D human pose estima-
tion.

In addition, the above methods are developed based on CNNs
backbones. In recent years, the transformers have gained pop-
ularity for their effectiveness in modeling long-range depen-
dencies and achieved great success on various machine learn-
ing tasks. Some works investigate the UDA with transformer
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backbones, such as Yang et al. (2023); Xu et al. (2021); Sun
et al. (2022b). For medical imaging applications, Ji and Chung
(2023) explores UDA for cross-modality medical images on the
segmentation task.

In this paper, we utilize the attention mechanism of the
transformer backbones to incorporate spatial prior knowledge
for UDA, which guides the learning process to focus on fea-
tures that are both transferable and discriminative. The model
demonstrates the transferability of transformer backbones on
the medical image prediction task as well as the performance
boost from the prior knowledge.

3. Methods

3.1. Problem Overview

The WHO severity score from 0-10 Marshall et al. (2020) is
used to assess the disease status of COVID-19 patients. Patients
with a WHO severity score greater than or equal to 7 will be in-
tubated. Baseline medical scans (unpaired 3D CT scans and
2D CXR scans) at day 0 are acquired and will be used to train
a model to predict if the patients will need intubation within 7
days. In addition, ground truth prediction labels for intubation
or not within 7 days are acquired. In this task, abnormal lesions
due to COVID-19 in both CT and CXR scans are regarded as
shared anatomical and spatial priors. 3D CT scans are projected
into DRRs. For each image DRR or CXR X € R**", manually
annotated abnormal lesions are denoted as prior expert knowl-
edge map K € R"". w and h are the width and height of image
scans.

In this paper, our goal is to utilize anatomical and spatial
priors to facilitate the unsupervised domain adaptation. More
specifically, we focus on the task of improving the performance
of the intubation prediction on unlabeled target scans using
source scans with pixel-wise expert-annotated abnormal lesion
maps K € R

3.2. Spatial Prior Acquisition

Abnormal lesions (GGO and CON) in both CT and CXR
scans are annotated to serve as spatial priors. Of note, for 3D
CT scans, lung and abnormal lesions are automatically gener-
ated by a segmentation model trained in our previous work on
a different CT dataset Henao et al. (2023). DRRs along with
lung, CON and GGO regions are generated from projections of
labeled CT scans Unberath et al. (2018), as shown in Fig. 2.

Abnormal lesions (GGO and CON) for our training CXR
scans are automatically generated by a standard U-Net model
Ronneberger et al. (2015) trained on a public CXR dataset 2, as
shown in Fig. 2.

Though generated lesion annotations are not perfectly cor-
rect, they contain useful domain expertise to serve as spatial
priors for our unsupervised domain adaptation tasks.

2https://github.com/GeneralBlockchain/covid-19-chest-xray-
segmentations-dataset

3.3. Intubation Prediction Network

Fig. 1 shows the proposed model. For simplicity, we describe
the methods taking labeled CTs (DRRs) as source data and un-
labeled CXRs as target data. The same methods apply for when
we switch domains, assigning labeled CXRs as source data and
unlabeled CTs (DDRs) as target data.

Vision Transformers (ViT) take in a sequence of N image
patches prepended by the [CLS ]-token. The [CLS ]-token can
be utilized for downstream prediction tasks. Denote source do-
main DRRs as X, source domain intubation prediction binary
labels as ys, transformer encoder as F,, and classifier as F..
Cross-entropy loss L¢g is optimized for this prediction task:

Ly = Len(FFXy) =~ 3 FuFdplogyl, (1)

$ xleX

where n; is the number of samples in the source domain.
Self-attention modules are the key to transformer-based vi-

sion models Vaswani et al. (2017). Formally, we have a query

0O, a key K and a value V calculated from a sequential input

patch, and we calculate the attention as:

KT
QW_ W @
k

Attention(Q, K, V) = so ftmax(

where dj, is defined as the dimensionality of Q and K and the
attention matrix sof’ tmax(Q—‘KH:) € RMN_ TInvestigating self-
attention, we extract the attention matrix values of each patch
with respect to the [CLS ]-token of the last layer of each atten-
tion head and exclude the attention matrix value for the [CLS |-
token with itself. This tensor can be upsampled into the shape of
the original image resulting in an attention map A,,,, € Ry
where w and & are the dimensions of X and »y, is the number of
attention heads.

3.4. Prior Knowledge-Guided Attention Regularization

As mentioned in the previous subsection 3.2 and subsection
3.3, we have an prior expert knowledge binary map K € R**"
and attention map A, € RWIXm - With a; i € Apgp and
kij € K, to incorporate the prior information, we consider
ki j = 1 to signify that the patch at location i, j is a more im-
portant region. Thus, we encode the expertise knowledge into
an attention regularization term, defined as

Z Z a; jkij — Z Z a; j(1 =k ). 3
T T

In the experiment, we use the above regularization term to
regularize one attention head in the transformer and embed the
prior information from expert knowledge into the model. It en-
courages the transformer to pay attention to the important re-
gions across domains.

3.5. Global Transfer Loss

To obtain domain-invariant features for the downstream pre-
diction task, denote a domain discriminator applied to the out-
put state of the class tokens of the source and target images as
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Fig. 1. Prior Knowledge-guided Unsupervised Domain Adaptation (PUDA) framework. It is composed of several individual components, including the
transformer backbone, classification head, knowledge guided attention regularization, global transfer loss and weighted local transfer loss.

Fig. 2. The first row are two examples of DRR images and abnormal region
masks (ground glass opacity and consolidation). They are generated from
labeled 3D CTs. The second row are two examples of CXR images with
abnormal region masks (ground glass opacity and consolidation).

D, and target domain CXRs as X;. The adversarial loss is de-
fined as

1 i i
La == ZX Ler(Dy(Fo(x0)), ¥
xieX;

1 o @
~— > Lep(Dy(Fe(x)).¥)

xeX,

where y'. denotes the domain label (y', = 1 for source and y/ = 0
for target) and n, is the number of samples in the target domain.

3.6. Weighted Local Transfer Loss

The global transfer loss above aims to effectively close global
domain gaps. As the learning of the class token embedding de-
pends on the learning of the image token sequence embeddings,
we also optimize a local transfer loss to achieve token-wise se-
quence feature alignment to address the domain shift caused
by local texture and style. Each token embedding in the en-
coder sequence is fed into a domain classifier D; for adversarial
feature alignment. The adversarial local transfer loss is then
defined as:

1 . .
Li==m5 2 D LerDFe). )

xieX, neN

_H’LN D3 Lep(DiF (i), ¥))

xieX, neN

&)

n € N, where N is the number of fixed patches in each input
image.

In addition, tokens contribute differently to the prediction re-
sults. Simply aligning tokens across domains can neglect to
match the key tokens and make the local transfer less efficient.
Motivated by this, we assign higher weights to those tokens dur-
ing adversarial training according to the attention weight in the
regularized attention heads. The weighted local transfer loss is
then defined as

Ly = (1 +wy)Ly (6)

where w, is the weight for the n—th token based on the attention
weight in the regularized attention heads.
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4. Experiment and Evaluation

4.1. Experimental Data

The collected dataset consists of CT and CXR imaging ex-
ams and CXR from COVID-19 patients with acute lung dis-
ease from three medical centers: Inselspital Bern, University
of Bern in Switzerland (IBE), Lindenhofspital Bern in Switzer-
land (SLB), and Yale New Haven Hospital in the USA (UYA).
The clinical data for intubation prediction labels were obtained
during routine clinical workup and retrospectively collected and
anonymized. The study was approved by the Ethics Commis-
sion of the Canton of Bern (ID: 2020-02614, ID: 2020-00954),
the Ethics Committee at Yale University (ID: 2000027839), and
the Ethics Committee at the University Hospital of Parma (ID:
1398/2020/0SS/AOUPR). All patients in the study gave con-
sent for their data to be used for research. The subjects included
in the study had to have a positive COVID-19 PCR test and CT
scan or CXR scan. We retrospectively collected patients’ med-
ical imaging and clinical data from which a subset of the avail-
able cases was selected using the criteria that (1) the patient had
a CT scan or CXR scan with clinical lab data available on both
day 0 and day 7 of image scan acquisition and (2) clinical lab
data used to manually label WHO severity scores indicated the
patient had a WHO severity score in the range of 3-6 on day 0
and 3-10 on day 7. Both CT and CXR images were automati-
cally segmented with our deep-learning COVID lung and lesion
segmentation models to generate pseudo labels for lung, GGO,
and CON. We split the above CT and X-ray scans into the train-
ing, validation, and test sets by patient, resulting in 692, 166,
and 195 CTs and 601, 132, and 176 X-rays, respectively.

4.2. Spatial Priors

To validate the relevance of abnormal regions in the scans
to the intubation prediction task, radiomics features, including
first-order, shape, and texture, were extracted from both lung
regions and abnormal regions in 3D CT scans. Pyradiomics
package was used for implementation Van Griethuysen et al.
(2017). These radiomics features were selected and fed into a
linear classifier and random forest classifier for the day 7 intu-
bation prediction task. The best performance with an F1 score
of 72.7 and an AUC score of 79.8 is achieved by combining
GGO and CON radiomics features with a random forest classi-
fier. This result serves as a reference for us to choose these two
types of lesions as our prior knowledge for this task.

4.3. Model Implementation Details

In our experiments, we used the base Vision Transformer
(ViT-B) Dosovitskiy et al. (2020) with patch size 32 as the back-
bone of our models. The input image size in our experiments
is 224x224. We use the stochastic gradient descent algorithm
with weight decay ratio of le-4 and momentum of 0.9 to opti-
mize the training process. There are 12 attention heads in total
for the vision transformer backbone. The batch size is set to
32. The model is trained on an NVIDIA TITAN RTX GPU.
Pytorch 1.8 is used for the implementation of our model. We
run models three times with different random seeds.

Table 1. Intubation prediction task results via unsupervised domain adap-
tation from labeled CTs (DRRs) to unlabeled CXRs

Test on XR F1 std | AUC | std
ResNet 556 (3.6 628 | 3.5
ViT 56.0 | 1.4 | 657 | 4.2

DANN Ganin and Lempit- | 61.2 | 1.8 | 68.2 | 2.6
sky (2015)
MDD Zhang et al. (2019) 62.1 | 2.8 | 674 | 43

SCDA Li et al. (2021) 62.4 | 40 | 683 | 3.4
ViT 4y 61.3 | 3.1 | 69.3 | 2.1
TVT Yang et al. (2023) 659 | 1.7 | 722 | 0.9
CDTrans Xu et al. (2021) 646 | 24 | 714 | 34
SSRT Sun et al. (2022b) 692 | 1.5 | 71.1 | 1.7
PUDA (Ours) 69.7 | 0.8 | 734 | 2.2

As for other methods for comparison, DANN Ganin and
Lempitsky (2015) proposes to play the min-max game with a
domain discriminator. MDD Zhang et al. (2019) introduces
the margin disparity discrepancy to reduce the distribution dis-
crepancy with a rigorous generalization bound. SCDA Li et al.
(2021) encourages the model to focus on the most principal fea-
tures via the pair-wise adversarial alignment of prediction dis-
tributions. The above models use ResNet-50 as the backbone in
our experiments. TVT Yang et al. (2023) exploits the transfer-
ability of ViT for domain adaptation to extract both transferable
and discriminative features. CDTrans Xu et al. (2021) adopts
a vision transformer and proposes a two-way center-aware la-
beling algorithm to produce pseudo labels for target samples.
SSRT Sun et al. (2022b) exploits predictions of perturbed tar-
get domain data to refine the prediction model. The same vision
transformer backbone ViT-B with patch size 32 is used for the
above models. Models are implemented with the Pytorch pack-
age.

4.4. Results

4.4.1. CTs to CXRs

For the task of unsupervised domain adaptation from CTs
(DRRs) to CXRs, a pretrained ViT Dosovitskiy et al. (2020)
and a pretrained ResNet50 model He et al. (2016) are finetuned
with labeled CXRs for intubation prediction to serve as the su-
pervised learning baselines for comparison. ViT achieves a per-
formance of an F1 score of 70.5 and an AUC score of 72.6 and
ResNet achieves a performance of an F1 score of 71.4 and an
AUC score of 74.9.

A ViT model finetuned with labeled DRRs and tested on
CXRs results in a performance of an F1 score of 55.6 and an
AUC of 62.8. In addition, a ViT model with adversarial train-
ing using the loss in Sec. 3.5 to simply align the class tokens
of the source and the target domains ViT,g, is considered an-
other UDA baseline method for comparison. Recent work on
UDA with both ResNet and transformer models such as DANN,
MDD, SCDA, TVT, CDTrans, and SSRT are also considered
for comparison. Our proposed method PUDA outperforms the
above methods with an F1 score of 69.7 and an AUC score of
73.4. Please refer to Table 1 for details.
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Table 2. Intubation prediction task results via unsupervised domain adap-
tation from labeled CXRs to unlabeled CTs (DRRs)

Test on DRR F1 std | AUC | std
ResNet 593171679 |32
ViT 59.0 | 3.1 | 70.6 | 44

DANN Ganin and Lempit- | 61.9 | 1.2 | 75.0 | 2.3
sky (2015)
MDD Zhang et al. (2019) 638 | 1.5 | 781 | 24

SCDA Li et al. (2021) 626 | 09 | 774 | 2.1
ViT v 615 | 1.2 | 77.1 1.3
TVT Yang et al. (2023) 629 | 1.7 1769 | 1.8
CDTrans Xu et al. (2021) 63.7 | 1.4 | 788 | 1.7
SSRT Sun et al. (2022b) 63308 | 77.1 | 2.0
PUDA (Ours) 65.6 | 1.3 | 80.6 | 1.5

Table 3. Domain adaptation ML model compared with two radiologists
predicting intubation at seven days from the first-day CXR i

Test on CXR Fl1 AUC
Radiologist1 67.6 | n/a
Radiologist2 64.9 | n/a
PUDA (Ours) 69.7 | 734

4.4.2. CXRsto CTs

Similarly, for the task of unsupervised domain adaptation
from CXRs to CTs (DRRs), both pretrained ViT and ResNet50
models are finetuned with labeled DRRs for intubation predic-
tion to serve as the supervised learning baselines for compari-
son. They achieve an F1 score of 67.8 and 69.3 and an AUC
score of 83.5 and 84.1, respectively. The vanilla ViT model,
baseline ViT,; model, and more recent DANN, MDD, SCDA,
TVT, CDTrans and SSRT models are trained for comparison
purposes. Our proposed method PUDA achieves the best per-
formance among all methods with an F1 score of 65.6 and an
AUC score of 80.6, as shown in Table 2.

4.4.3. Comparison to radiologists

Two experienced radiologists manually perform the same in-
tubation prediction task independently from the machine learn-
ing model for comparison. As shown in Table 3, our model
performs better in terms of F1 score compared to the two radi-
ologists.

4.5. Model Analysis

As shown in Table 1 and Table 2, our proposed method
PUDA performs the best compared to other methods. In ad-
dition to the quantitative results, we visualize the attention map
from the regularized attention head of our method to have a
better understanding of our model. Please refer to Fig. 3 for ex-
amples of DRRs, attention maps, and abnormal region masks.
It shows that the saliency regions in the generated attention map
from the regularized attention head are aligned with the abnor-
mal region masks in the lung regions. During testing, in ad-
dition to the prediction results, the model generates attention
maps on the test CXRs which reveals the important regions for
the model to make the decisions. As shown in Fig. 4, these

Fig. 3. Two examples of DRRs, attention maps from our PUDA model, and
abnormal region masks (ground glass opacity and consolidation).

Fig. 4. Four examples of test CXRs and corresponding attention maps from
our PUDA model.

saliency regions are assumed to be abnormal regions in these
CXRs.

For comparison, we also visualize the attention map of the
same attention head in the baseline unsupervised domain adap-
tation model ViT,4,, where no prior information is used to reg-
ularize the attention map. As shown in Fig. 5, without prior
guided regularization, the saliency regions in the attention map
from the ViT,;, model fall outside the lung area.

Furthermore, the attention maps along with the prediction
results can be regarded as the interpretation of the prediction
model. To evaluate the faithfulness of the model explanation
by the attention maps, inspired by the pixel-flipping experiment
proposed by Bach et al. (2015), we flip the top 5 percent pixels
in input images according to the attention maps and evaluate
the impact of these flips on the prediction scores. More specifi-
cally, if we flip a pixel, flipped = pixelx(—1). We use attention
maps from PUDA and ViT,, to do the flip individually on the
input images. The F1 score and AUC score drops by 13.2% and
19.4% for PUDA and by 7.1% and 8.9% for VIT,dv. It shows
that the attention maps from PUDA highlight more important
regions that are relevant to the prediction task, thus providing a
better interpretation for the prediction model.

4.6. Ablation study and analysis

Ablation studies are performed to evaluate the effectiveness
of the proposed method. For the task of unsupervised domain
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Fig. 5. Two examples of DRRs and generated attention maps from PUDA
and ViT,,,.

Table 4. Ablation analysis

Test on XR F1 std | AUC | std
Vi 61.3 | 3.1 | 693 | 2.1
V, 672 | 1.8 | 71.5 | 2.5
Vs 683 (231|719 |28
PUDA 69.7 | 0.8 | 734 | 2.2

Table 5. Use the whole lung segmentation mask as the prior knowledge
map

Test on XR F1 std | AUC | std
PUDA 69.7 | 0.8 | 73.4 | 2.2
PUDA (lung mask) 679 | 1.3 | 72.8 1.7

adaptation from CTs (DRRs) to CXRs, we remove the prior
knowledge guided regularization and weighted local transfer
loss respectively. As shown in Table 4, V; denotes the pro-
posed model without prior knowledge guided regularization
and weighted local transfer loss, which reduces to the baseline
model ViT,4,. In addition, V, denotes the proposed model with-
out the weighted local transfer loss term and V3 denotes the
proposed model without weights for local transfer loss. Each
additional component of the proposed model contributes to im-
proved prediction performance, with the full PUDA model per-
forming the best as assessed by both F1 and AUC metrics.

To have a better understanding of the influence on the pre-
diction accuracy from the segmentation accuracy, we first re-
placed the specific lesion segmentation of GGO and CON with
the whole lung segmentation mask. As shown in Table 5, the
performance of the proposed PUDA model with the whole lung
mask as the prior knowledge map is worse than the original
PUDA with GGO and CON lesion masks.

To assess the robustness of the performance against the prior
knowledge map, corruption, such as random crop, blur, and
elastic transformation, is performed on the prior knowledge
segmentation mask. As shown in Table 6, results with blur and
elastic transformation as corruption on the prior knowledge map
are at the same level as the original PUDA. As for random crop,
the performance drops a lot with the random crop 50% corrup-

Table 6. Mask corruption on the prior knowledge map

Test on XR F1 std | AUC | std
Random crop (50 %) 662 | 56 | 704 | 4.8
Random crop (25 %) 693 | 2.7 | 725 | 2.1
Random crop (10 %) 69.8 | 23 | 72.7 | 2.6
Blur 703 | 0.8 | 73.1 1.4
Elastic transformation 69.5 | 1.4 | 73.2 1.6

tion. Of noting, random crop X% in the table means to randomly
crop from an image of size (h, w) and the cropped region size
is (x%h, x%w).

4.7. Discussion

As shown in the previous sections, our model PUDA outper-
forms the existing ResNet-based and transformer-based meth-
ods on both UDA tasks from CTs (DRRs) to CXRs and from
CXRs to CTs (DRRs). An ablation study was performed
to evaluate the effectiveness of the proposed components and
showed improved model performance with each added compo-
nent. To further understand the benefits of the proposed method
of incorporating prior knowledge, we tested incorporating the
prior knowledge map into the CNN approach DANN Ganin
and Lempitsky (2015) by adding the segmented image as an-
other input channel. Under the CTs to CXRs UDA task, the
DANN-prior model achieves a performance of an F1 score of
65.2 and AUC score of 71.3 while our PUDA model exploits the
attention mechanism of transformer models to utilize the shared
prior information across domains and improves the UDA per-
formance to an F1 score of 69.7 and 73.4.

While the proposed PUDA model outperforms other baseline
and state-of-the-art UDA methods, there are also some limita-
tions to the approach. As the expert anatomical and lesion la-
bels on the training CT scans and CXR scans are generated au-
tomatically by deep learning segmentation models, errors by the
automated segmentation models could be harmful to the perfor-
mance of the prediction task. More precise prior knowledge
maps with more detailed lesion segmentations might help to
further improve the performance of the model.

Both CT and CXR play important roles in the diagnosis and
treatment of lung diseases. While CXR is more readily avail-
able and can be performed frequently (daily or even multiple
times a day) and CT carries more detailed information, they
provide complementary characteristics of the same anatomical
structures. This work proposes an unsupervised domain adap-
tation (UDA) tool to transfer knowledge across imaging modal-
ities for clinical prediction. The tool adapts deep learning mod-
els from the label-rich source modality (e.g., CT) to the unla-
beled target modality (e.g., CXR). By performing a CT scan at
approximately the same time as a CXR, the tool can introduce
a wealth of information into the CXR interpretation, allowing
subsequent CXR interpretations to be made with a higher de-
gree of confidence. On the other hand, the tool can also in-
troduce information from CXR into CT scan interpretation to
achieve reasonable performance on the downstream prediction
task. The proposed UDA tool aims to alleviate the burden of
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data annotation by enabling knowledge transfer across modal-
ities without the need for extensive manual annotation. Addi-
tionally, paired CT and CXR datasets are rare, which can pose
a significant obstacle in developing effective cross-modal mod-
els. The proposed method is designed to work with unpaired
CT and CXR data, making it more widely applicable in real-
world scenarios. More importantly, it introduces the use of spa-
tial prior knowledge from domain experts to boost UDA per-
formance across domains, which is widely available in medical
imaging.

DRRs generated from 3D CTs work well for the predic-
tion task in our paper. However, it is interesting to model
2D to 3D scenarios, e.g. from Xrays to 3D CTs. There exist
some works that can perform 2D-to-3D reconstruction Karade
and Ravi (2015); Henzler et al. (2018); Jackson et al. (2017).
Specifically, Shi et al. (2024) demonstrates the feasibility of re-
constructing 3-D lung surfaces from a single 2-D chest x-ray
image via a vision transformer. For future work, it could be
interesting to explore Xray to CT domain adaptation with a dif-
ferent task that requires 3D CT, e.g. 3D tissue segmentation. In
addition, 3D to 3D domain adaptation could be also interesting
for certain clinical applications in practice. 3D cross-modality
(e.g. between CT and MRI) segmentation has been explored
Guo et al. (2023). There are other cross-modality clinical tasks
between 3D imaging, such as the assessment of respiratory dis-
ease in cystic fibrosis (CF) with chest imaging (between CT and
MRI) . For patients with CF, 3D CT provides higher resolution
than 3D MRI while MRI is radiation free.

The proposed model is designed to to introduce the prior
knowledge for unsupervised domain adaptation and evaluated
on the clinical outcome prediction downstream task. For future
work, on one hand, there are other relevant clinical applications
such as object detection, disease quantification, and segmen-
tation, and it is interesting to evaluate our proposed model on
various different downstream tasks and observe the generaliza-
tion ability. On the other hand, there are other types of prior
knowledge besides the spatial prior knowledge such as class ra-
tio of the target domain, it is also worth exploring to generalize
the proposed model to other types of prior knowledge.

5. Conclusion

In this paper, we study how to exploit prior knowledge for
unsupervised domain adaptation in medical image analysis and
evaluate our method on a clinical outcome prediction task.
Specifically, anatomical and spatial priors across domains are
embedded into the regularized attention heads of vision trans-
formers. Besides the global alignment of class tokens, it guides
sequential feature alignment via local weights. The experimen-
tal results for the task of intubation prediction show the effec-
tiveness of the proposed methods.
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Highlights

(1) We propose a transformer-based UDA framework that utilizes shared anatomical and spatial
priors across domains for medical image analysis.

(2) The proposed method effectively regularizes the attention heads in the vision transformer
guided by prior knowledge and improves both the discriminability and transferability of the
learned features. Besides the global alignment of class tokens, the regularized attention guides
the adversarial alignment of the distribution of sequential features.

(3) Our knowledge-guided model incorporating domain expertise produces a more reasonable
attention map along with the prediction results, thus leading to a better understanding of the
deep learning model.

(4) In addition, the proposed model performs favorably compared with human radiologists on
the same intubation prediction task.
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