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In computer-assisted orthopaedic surgery, recovering three-dimensional patient-specific anatomy from
incomplete information has been focus of interest due to several factors such as less invasive surgical pro-
cedures, reduced radiation doses, and rapid intra-operative updates of the anatomy. The aim of this paper
is to report results obtained combining statistical shape modeling and multivariate regression techniques
for predicting bone shape from clinically and surgically relevant predictors, including sparse observations
of the bone surface but also morphometric and anthropometric information. Different state of the art
methods such as partial least square regression, principal component regression, canonical correlation
analysis, and non-parametric kernel-based regression are compared. Clinically relevant surrogate vari-
ables and combinations are investigated on a database of 142 femur and 154 tibia shapes obtained from
CT images. The results are evaluated using cross validation to quantify the prediction error. The proposed
approach enables to characterize the added value of different predictors in a quantitative and localized
fashion. Results indicate that complementary sources of information can be efficiently exploited to
improve the accuracy of shape prediction.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In computer-assisted orthopaedic surgery, there is increasing
interest in developing technologies to assess bone anatomy pre-,
and intra-operatively in a non-invasive way. Furthermore, radia-
tion dose reduction has been acknowledged as an important goal
in healthcare, fostering the use of less irradiative technologies
(Raisz and Jul, 2005; Task Group on Control of Radiation Dose in
Computed Tomography, 2000; Brenner et al., 2007). Additionally,
some orthopaedic surgeries such as total hip arthoplasty (THA)
and total knee arthoplasty (TKA) usually do not rely on a pre-, or
intra-operative computed tomography (CT) scan. Therefore,
patient-specific three-dimensional shape reconstruction from
sparse information, e.g. acquired from ultrasound (US) or X-ray
imaging, clearly appear as highly desirable technologies both for
pre-operative planning or for intra-operative navigation. In the last
years, methods to reconstruct patient specific bone shape using
statistical shape modeling techniques have grown in popularity.
For a comprehensive review of statistical shape model applied to
medical images the reader is referred to (Heimann and Meinzer,
2009). General approaches as well as modality-specific methods
have been developed (Fleute et al., 1999, 2002; Benameur et al.,
ll rights reserved.
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2003; Chan et al., 2003; Lamecker et al., 2006; Rajamani et al.,
2007; Zheng et al., 2007; Barratt et al., 2008; Zheng et al., 2009;
Baka et al., 2011). The main idea of statistical model-based shape
reconstruction is to find statistically plausible parameter values
of the model that minimize a fitting criterion between the instan-
tiated model and the available patient-specific information.
Common to these works is the type of information used to guide
the reconstruction, which consists of explicit morphological obser-
vations such as surface patches, contours or points. Such methods
generally rely on multi-linear regression approaches. In (Liu et al.,
2004a) canonical correlation analysis (CCA) was used to predict
abnormal brain tissues from known correlations with other brain
structures. In (Rao et al., 2008a, 2006) prediction of the morphol-
ogy of brain structures was investigated based on the analysis of
shape correlations amongst different structures in the brain and
Partial Least Squares (PLS) Regression. In (Yang et al., 2008) a PLS
based regression was also used to predict the humerus bone from
surface points of the scapula. Extensions to non-linear constraints
have been proposed for scene generation in the context of surgical
simulators (Sierra et al., 2006; Harders and Székely, 2007; Basdo-
gan et al., 2007). Though in these papers, the constraints are based
on non-linear functions of point positions, these still refer to expli-
cit shape landmarks. Such approaches do not consider anthropo-
metric patient information such as height, weight or age which,
although less explicitly related to the organs morphology, can also
be expected to be relevant shape predictors.
e prediction from a combination of direct observations and various surro-
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In (Rohlfing et al., 2009a,b) multi-linear regression is used to
create an age-dependent brain atlas, therefore drawing an explicit
link between age and brain morphometry. For a similar purpose,
Ericsson et al. (2008) proposed to use non-parametric regression.
In (Blanc et al., 2009) a non-parametric approach for conditional
shape modeling was introduced, which enables to constrain a sta-
tistical model simultaneously by several anthropometric and mor-
phometric information. The results highlight the more compact
model that can be attained by conditioning the space of plausible
shapes, making the proposed method suitable to create patient-
specific shape models, while reducing the space of the modeled
shape variability.

The aim of this paper is to compare different approaches capa-
ble of exploiting heterogeneous sources of information for the pur-
pose of statistical model based shape prediction, and to investigate
the added value of different types of predictors. We report results
obtained using multivariate regression techniques for bone shape
prediction using both anthropometric and morphological data con-
straints as well as explicit predictors, in the form of surface patches
or points clouds directly observed from the surface of the organ,
that are clinically and surgically relevant in the context of mini-
mally invasive surgery. Different state of the art regression meth-
ods such as partial least square regression (PLS), principal
component regression (PCA), canonical correlation analysis (CCA),
and non-parametric kernel-based regression are compared on a
database of 142 human femurs, and another of 154 human tibias.
The prediction results are evaluated using leave-one-out cross
validation.

Section 2 introduces the data, their preprocessing to generate a
statistical shape model, and the set of morphological and anthro-
pometric predictors considered in our experiments. Section 3 de-
scribes the generic shape prediction approach employed in this
study, and the specific mathematical regression models we com-
pare, specifically PLS, PCA, and CCA. Section 4 proposes several
experiments to compare the different regression techniques, and
the predictive value of various combinations of predictors. Finally,
section 5 discusses the obtained results and concludes the paper.
2. Data and preprocessing

A total of 142 femurs and 154 tibias were selected from our
database (age range: 23–83, mean 62.57 std. dev. 15; 46% males
and 54% females) of CT scans, from individuals of known gender,
age, height and weight. The images were acquired on a Toshiba
Aquilion CT scanner, with a resolution of 0.877 mm and slice incre-
ments of 1 mm. The set of CT scans were initially pre-processed by
semi-automatic segmentation using the Amira software (Mercury
systems).
Fig. 1. Distance and angle based predictors for femur and tibia. Leftmost: proximal–
distal (top) and anterior aspect (bottom) of the femur. Middle: Proximal anterior
aspect of the femur (top), and proximal medial lateral tibia (bottom). Rightmost:
proximal–distal and posterior aspect of the tibia.
2.1. Point distribution model

In this study, image registration is used to provide a way to
establish point correspondences amongst shapes in order to simul-
taneously generate the statistical shape model, extract the mor-
phological parameters in a consistent way across the set of
shapes, and build the regression functionals for shape prediction.
The image registration pipeline is based on previous work focusing
on high-throughput bone morphology assessment (Seiler et al.,
2009). First, a common reference image is chosen from the cohort.
Based on this selection, affine-based image registration is per-
formed between the reference image and the remaining datasets
(Ourselin et al., 2000). The aim of this step is to provide the non-ri-
gid registration with an initialization for the final image warping.
The underlying parameters were chosen empirically as three mul-
ti-resolution levels, 10 maximum number of iterations per level,
Please cite this article in press as: Blanc, R., et al. Statistical model based shap
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normalized correlation coefficient metric, and tri-linear interpola-
tion. The non-rigid registration we adopted is based on the work
of (Vercauteren et al., 2008), where a diffeomorphic demons regis-
tration approach is proposed. In this registration framework the re-
sults of the registration are stationary velocity fields, which can be
looked at as generators for diffeomorphic deformations, and effi-
ciently computed using the scaling and squaring method (Arsigny
et al., 2006). In addition, a femur-specific polyaffine regularization
model was used to improve the accuracy of the non-rigid registra-
tion method. This regularization model is composed of a three-
compartmental transformation covering the proximal, distal and
shaft sections of the bone. During the log-domain optimization
step, a linear-square problem is solved with respect to the velocity
field to find the parameters of the polyaffine transformation used
during regularization (Seiler et al., 2010). Similarly to the affine im-
age registration, the selection of parameters for the non-rigid algo-
rithm was chosen empirically as three multi-resolution levels, ten
iterations per level, Gaussian regularization with standard devia-
tion of 1 pixel, sum of square intensity differences as metric and
tri-linear interpolation. After non-rigid registration, the resulting
displacement vector fields are used to build a point distribution
model (PDM) of the bone surface by propagating point-correspon-
dences on the reference bone surface mesh. This propagation re-
quires interpolation of displacement vector fields at each bone
surface mesh node. Consequently, to ensure good correspondences
at the bone surface, a labeled bone tissue image was used to en-
force an anisotropic sampling of the displacement vector fields,
where background-labeled voxels are excluded from the interpola-
tion. In order to better take into account the effects of sparse obser-
vation on shape prediction and the uncertainties related to pose
estimation, we proceed as in (Baka et al., 2010) by aligning all
meshes to the reference with respect to the parts of the bone that
will be observed. Finally, the built PDM is used to propagate mor-
phological measurements defined on the reference bone over the
cohort. The PDM and set of measurements are then used to build
the shape regression functionals described in the following section.

2.2. Morphometric variables

The morphometric predictors were chosen according to com-
monly used clinically and surgically relevant parameters (Maha-
isavariya et al., 2002; Rubin et al., 1992; Hitt et al., 2003; Tajima
e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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Fig. 2. Point clouds used to simulate US imaging as typically used in computer
assisted orthopaedic surgery, see text for references. The point of clouds is later
considered as predictor variable.

Table 1
Summary of predictor values for the population used in these experiments.

Mean SD Max Min

Femur
Age (years) 63.89 16.23 93.00 21.00
Height (cm) 165.85 6.93 181.00 150.00
Weight (kg) 71.29 15.24 140.00 42.00
Femur length (mm) 413.63 22.70 474.19 352.19
Intercondyle distance (mm) 49.62 3.85 60.52 41.95
Neck length (mm) 63.65 5.15 75.50 50.32
Head diameter (mm) 46.78 3.59 55.88 39.28
Anteversion angle (�) 18.22 1.14 21.49 13.60
Collo-diaphysis angle (�) 129.82 5.37 141.38 116.46
Trochanter-neck angle (�) 90.88 4.08 99.53 80.57
Greater trochanter-head distance (mm) 69.19 5.40 85.24 58.35
Lesser trochanter-head distance (mm) 82.71 5.44 96.62 68.79

Tibia
Age (years) 64.78 15.62 90.0 21.0
Height (cm) 166.16 6.81 181.00 151.00
Weight (kg) 71.82 15.23 140.00 42.00
Tibia length (mm) 352.59 21.37 401.21 299.05
Tibia plateau height (mm) 59.17 5.17 75.48 47.95
Tibia plateau slope (�) 15.21 2.30 23.12 10.08
Tibia plateau width (mm) 77.46 5.45 92.93 65.73
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et al., 2009; Krebs et al., 2009; Parratte et al., 2008; Schünke et al.,
2006). Fig. 1 summarizes distance and angle-based predictors,
while Fig. 2 shows areas typically observed using US imaging to
Fig. 3. Correlation coefficient calculated for the matrix of pre
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perform computer-assisted surgery (Mozes et al., 2010; Dekomien
et al., 2007; Barratt et al., 2008; Schumann et al., 2010), which we
will consider as potential shape predictors. The morphological pre-
dictors are defined in more detail in B and C.

Statistics of the distribution of the considered anthropometric
and morphometric variables observed on our database are pre-
sented in Table 1. The correlation coefficient between pairs of vari-
ables are given in Fig. 3a) and Fig. 3b for femur and tibia,
respectively.
3. Shape prediction

In practical applications such as navigation in minimally inva-
sive surgery, and especially in the context of sparse observation
of the shape surface, shape prediction involves two main steps:
(1) the identification of the observed parts, which necessitate to
draw correspondences between the observation and locations on
the surface of the statistical shape model; and (2) the estimation
of pose and shape parameters, which enables casting a patient spe-
cific instance of the statistical shape model in the coordinate sys-
tem of the imaging system.
3.1. General approach

Methods such as the Iterative Closest Point (ICP) transform and
its variants Besl and McKay (1992); Fleute and Lavallée (1998) can
be employed to estimate correspondences. From an initial instance
of the shape model, correspondences are obtained by matching the
closest pairs of points between the observation data and the shape
model. Then, shape and pose parameters are optimized to mini-
mize the distance between corresponding pairs of points, and the
process is iterated until convergence.

For the optimization of shape and pose parameters, we follow
the approach proposed in Blanz et al. (2004), which consists in
approximating the pose transform, so that the predicted shape
can be expressed as a large linear system depending on both shape
and pose parameters. The pose transformation is approximated
through the estimation of pseudo-eigenvectors, which are concat-
enated to the modes of deformation of the statistical shape model.
dictors measures for the femur (a) and tibia (b) shapes.

e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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Contrary to other methods that rely on alternated optimization of
the shape and pose parameters separately, this approximation al-
lows for the optimal parameters to be jointly estimated analyti-
cally in a single step, as the solution of a regularized multilinear
regression model. This method involves an approximation of the
rotation and possibly scaling components of the transform. How-
ever, this approximation remains reasonable when only small an-
gles need to be corrected. Furthermore, as suggested in Blanz
et al. (2004), larger corrections can be dealt with by iteratively
applying the estimated pose to the mean shape and repeating
the regression until convergence. While in Blanz et al. (2004), the
authors propose to employ a regularized pseudo-inverse to per-
form the regression, the different regression schemes presented
in the following section 3.2 can be employed as well.

The integration of morphometric and anthropometric predic-
tors in these regression models will be discussed in Section 3.5.
However, since these predictors are pose invariant by nature and
do not depend on the establishment of correspondences with the
model, it is appealing to exploit them by first computing a shape
distribution conditioned on the values of these predictors, and then
perform the actual shape regression using the observation data.
We briefly describe a conditional Gaussian model, and a method
based on kernel density estimation in Section 3.4. Additional com-
ments on the implementation of the regression are given in A.
3.2. Multivariate statistical analysis for shape prediction

As mentioned in the introduction, the aim is to predict the
shape of the complete organ of interest given various predictors.
Let denote y the (column) vector of variables to predict, and x
the available predictors. For these sets of variables, the statistical
model provides a set of training samples, respectively denoted Y
and X, from which we estimate the sample mean and covariance
mx, my, Sxx, Syy The prediction of y from x can be performed using
multivariate linear regression, as described in (Hastie et al., 2001
and Weisberg and January, 2005). In this study, three methods that
have been employed in the context of statistical model based
shape prediction will be investigated, namely regression based
on Principal Component Analysis (PCA), also known as principal
component regression, Partial Least Squares (PLS) and Canonical
Correlation Analysis (CCA). A brief description of these techniques
is given below, while more details can be found in (Borga et al.,
1997; Muller, 1981/06/27; Hastie et al., 2001; Weisberg and Janu-
ary, 2005) and references therein. The principle of multivariate lin-
ear regression is to form an estimate.1

_̂y ¼ B _x ð1Þ

A usual optimality criterion for B, is the Ordinary Least Squares
(OLSs), which minimizes the Frobenius norm of the residuals on
the training set:

R ¼ _Y � _̂Y
��� ���2

F
() BðOLSÞ ¼ Syx Sxxð Þ�1 ð2Þ

However, in the context of statistical shape models, Sxx usually can-
not be directly inverted due to both a limited number of observa-
tions and the presence of linear relations between the variables in
x. One traditional way to deal with rank deficiency in Sxx is to add
a regularization term, e.g. as in ridge regression through a small po-
sitive definite matrix, prior to the inversion: BðOLSÞ ¼ SyxðSxx þ kIÞ�1,
where k is a ridge regression parameter to be optimized.
1 Note that a dot on top of a variable indicates that it is centered: _x ¼ x �mx; it is also
possible to estimate the intercept by replacing the vector _x by ½1; _̂x� in (1), and modify
the size of B accordingly.
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3.3. Subspace methods for regression

Another possibility is to project the data in a subspace where it
is not rank deficient, and calculate its inverse in this subspace. The
different methods mentioned above differ by the choice of the sub-
space: PCA uses a projection in a subspace where _X has a maxi-
mum variance, while PLS and CCA choose subspaces which
maximize respectively the covariance and the correlation between
_X and _Y (Borga et al., 1997; Liu et al., 2004b; Bennett et al., 2003).

3.3.1. Regression based on PCA
Using singular value decomposition _X ¼ UTVT (Golub and Van

Loan, 1996), the covariance matrix Sxx can be written as:

Sxx ¼
1

n� 1
U TT T
� �

UT ð3Þ

The unitary matrix U contains the eigenvectors of Sxx, while the ele-
ments of the diagonal matrix ðT

T TÞ
ðn�1Þ are its eigenvalues. As U forms an

orthonormal basis, U�1 ¼ UT , the inverse of Sxx can be written:

S�1
xx ¼ ðn� 1ÞU TT T

� ��1
UT : ð4Þ

If Sxx has small (or zero) eigenvalues, this inversion is clearly unsta-
ble (or not even defined). PCA avoids this problem by selecting only
the r largest eigenvalues and their corresponding eigenvectors be-
fore inversion, that is keeping only the r first columns of U and T,
in a way similar to the Moore–Penrose pseudo-inverse. However,
r is considered here as a parameter of the regression that can be
optimized.

The PCA regression coefficients are thus expressed as:

BðPCAÞ ¼ SxyUr TT
r Tr

� ��1
UT

r ; ð5Þ

where the basis Ur and the scores Tr are provided by the SVD
decomposition of _X.

3.3.2. Regression based on partial least squares
In PLS, instead of finding the directions ui where the variance of

_X, or similarly uT
i

_X _XT ui, is maximum, the aim is to find pairs of
directions ui and v i so that the covariance, and thus also
qi ¼ uT

i
_X _YTv i is maximal, while still keeping the constraint that

both Ur ¼ ½u1; . . . ;ur � and Vr ¼ ½v1; . . . ;v r � form orthonormal bases.
Taking the partial derivatives of qi, setting them to zero and fol-

lowing the constraint that ui and v i are unitary vectors, it can be
shown that those directions are obtained by resolving the follow-
ing eigenvector problem:

SxySyxui ¼ q2
i ui

SyxSxyv i ¼ q2
i v i

ð6Þ

The scores Tr , and the final regression coefficients are then given by

Tr ¼ _XT Ur

BðPLSÞ ¼ SxyUr TT
r Tr

� ��1
UT

r

ð7Þ
3.3.3. Regression based on canonical correlation analysis
In the case of CCA, pairs of directions producing maximum cor-

relations are sought:

qi ¼
uT

i Sxyv iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uT

i SxxuivT
i Syyv i

q ð8Þ

Maximizing with respect to ui and v i leads to a generalized eigen-
value problem:

SxyS�1
yy Syxui ¼ q2

i Sxxui

SyxS�1
xx Sxyv i ¼ q2

i Syyv i;
ð9Þ
e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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where the matrices on both sides are symmetric. Though Sxx and Syy

are generally only semi-definite positive, a good approximation can
be obtained, as previously, by adding a small positive matrix before
inversion. Another solution is to perform a PCA on Sxx first, and re-
tain only the eigenvalues which are not too close to zero.

Retaining the directions Ur corresponding to the principal
modes defined by (8) and pluging them in equation (7) leads to
the corresponding coefficients BCCA.

3.4. Conditional models

Another way to look at shape prediction is to consider the joint
distribution of both predictors and variables to predict, Pðx; yÞ, and
to calculate the conditional distribution PðyjxÞ describing a condi-
tional model of the shape given these predictors values. In partic-
ular, the conditional expectation E½yjx� can be considered as an
estimate of the shape that best corresponds to the observed predic-
tors. Two different models for the joint distribution Pðx; yÞ are con-
sidered here: a simple multivariate Gaussian model, and the kernel
density model proposed in (Blanc et al., 2009).

3.4.1. Multivariate normal model
This model is characterized by two parameters, the mean m and

covariance matrix S of the normal distribution, which we estimate
through the sample statistics, i.e.:

m ¼ ½mx; my�; S ¼
Sxx Sxy

ST
xy Syy

 !
ð10Þ

Under this model, the conditional mean is expressed as:

ŷ ¼ E½yjx� ¼ my þ SxyS�1
xx ðx�mxÞ; ð11Þ

which is equivalent to the OLS regression. The same considerations
related to the inversion of Sxx apply, as well as the possibility to add
a regularization term to Sxx to stabilize its inversion, at the cost of a
small bias in E½yjx�.

The full conditional distribution is also Gaussian, with
covariance:

Cov ½yjx� ¼ Syy � SxyS�1
xx ST

xy; ð12Þ

Since this is a Gaussian model, the conditional distribution can be
safely expressed through a mean shape E½yjx� and a set of linear
deformations obtained from the diagonalization of Cov½yjx�.
Fig. 4. (a) Influence of the dimensionality reduction on the average prediction errors for
optimization of prediction parameters. Results obtained with the femur model and all a
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3.4.2. Kernel density model
A kernel density model is a non-parametric method for estimat-

ing a probability distribution from a set of samples. It relies on the
choice of a kernel function KH , where H is the kernel bandwidth.
We choose a Gaussian kernel, and optimize its bandwidth through
cross-validation as proposed in (Blanc et al., 2009).

Pðy; xÞ ¼ 1
n

Xn

i¼1

KHðy� yi; x� xiÞ ð13Þ

ŷ ¼ E½yjx� ¼
Xn

i¼1

wilðiÞyjx ð14Þ

with wi ¼ KHx ðx�xiÞPn

j¼1
KHx ðx�xjÞ

and lðiÞyjx ¼ yi þWyxW�1
xx ðx� xiÞ.

Since this distribution model is non linear, the conditional dis-
tribution obtained by this approach cannot be directly plugged in
the statistical model based shape prediction described in 3.1. The
proposed two-step shape estimation is therefore not recom-
mended with the shape fitting techniques described in this paper,
and only the conditional shape E½yjx� given both the observation
data and patient meta-information will be considered in the
experiments.

3.5. Incorporation of anthropometric and morphometric predictors

Scalar predictors (i.e. continuous variables) such as the morpho-
metric and anthropometric parameters described in Section 2.2 can
directly be incorporated into these regression schemes, concatenat-
ing them into the vector x of predictors (response matrix X of train-
ing data). However, due to the typically large number of point
predictors compared to anthropometric and morphometric vari-
ables, it may be preferable to pay special attention to the balance
between the different types of predictors. This can be achieved for
instance by re-scaling the different variables. In our experiments,
we replaced the point predictors by their projection in the corre-
sponding PCA space characterized by mx and Sxx, effectively reduc-
ing the number of surface-related predictors, and directly
concatenated them with the continuous anthropometric and mor-
phometric predictors. In extenso, the vector of predictors is written:

x ¼
ppts

xmeta

� �
ð15Þ

where xmeta is the vector of anthropometric and morphometric pre-
dictors, and ppts a compact representation of the point predictors.
PCA, PLS and CCA regression methods. (b) Distribution of the prediction error after
vailable surrogate variables as predictors.

e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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In the case of categorical predictors, such as the gender or eth-
nic group, a straightforward solution is to train a statistical model
using only the adequate subset of training samples, provided that
enough cases in an available database comply with the given
constraints.
4. Experimental study

We propose three experiments to investigate different aspects
related to shape prediction from various types of predictors. In a
first experiment, we compare the performances of the different
Fig. 5. Summary of prediction errors for different sets of predictors. Top: Whisker plots
Bottom: Coefficient of determination relative to the mean shape model variability and p
(please refer to main text). Values close to 0 indicate low variability reduction of the pre
the variability. From left to right, mean shape, anthropometric, morphometric informat
morphometric information. (For interpretation of the references to color in this figure le
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regression techniques presented in Section 3.3 using a fixed com-
bination of predictors from the set of sparse surface observations,
anthropometric and morphometric measurements defined in Sec-
tion 2.2. A second experiment compares the accuracy of shape pre-
diction using different sets of predictors. For both experiments, in
order to simplify the comparisons and to concentrate exclusively
on shape differences, the exact pose and correspondences are used.
In a third experiment, we analyze in more details the interest of
using anthropometric information to complement sparse observa-
tions in a complete shape fitting experiment, including the estima-
tion of shape and pose, as well as correspondences between the
sparse observation and the shape model.
of mean prediction errors. Middle: Color-coded absolute average prediction error.
oint-cloud-based prediction. Arrows indicate the base prediction used as reference

diction over the population, whereas values close to 1 indicate a strong reduction of
ion, point cloud (surface points), point cloud plus anthropometric, point cloud plus
gend, the reader is referred to the web version of this article.)

e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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In all the experiments, for both the femur and tibia models, a sys-
tematic leave-one-out (LOO) cross validation is performed to esti-
mate the optimal values for the parameters of the various
regression methods described in Section 3.2, and to evaluate the cor-
responding prediction accuracy. For each predicted shape, we com-
pute the point-wise prediction error as the distance between each
predicted point and its ground-truth counterpart, using a shape
model trained on all other available shapes. The average prediction
error, computed over all points and all predicted shapes in the LOO
experiment, is used as the goal function for the optimizations.
4.1. Comparison of shape regression methods

In this experiment, we exploit the full set of anthropometric and
morphometric predictors described in Section 2.2, except gender,
to compare the regression methods presented in Section 3.2.
Fig. 6. Summary of prediction errors for different sets of predictors. Top: Whisker plots
Bottom: Coefficient of determination relative to the mean shape model variability and p
Values close to 0 indicate low variability reduction of the prediction over the population,
right, mean shape, anthropometric, morphometric information, point cloud (surface poi
(For interpretation of the references to color in this figure legend, the reader is referred

Please cite this article in press as: Blanc, R., et al. Statistical model based shap
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As can be seen in Fig. 4a, the different linear methods appear to
perform in a very similar way, after optimization of both the num-
ber of retained dimensions and of the coefficient of the regulariza-
tion term. Rather than in the estimated optimum, the differences
between the prediction methods mostly appear in their behavior
with respect to the number of retained modes, as shown in
Fig. 4b. Namely, PLS and in particular CCA manage to capture most
of the relations between the predictors and the predicted shape
with fewer modes compared to PCA. However, the computational
cost associated to CCA hinder its use in large-scale experiments.
Not surprisingly, the conditional mean under the Gaussian model
prove to generate results very similar to the linear regression ap-
proaches. However, rather unexpectedly, the kernel density ap-
proach appeared to provide less accurate estimations. We believe
this is due to the difficulties related to bandwidth selection in such
a sparsely sampled, high dimensional space.
of mean prediction errors. Middle: Color-coded absolute average prediction error.
oint-cloud-based prediction. Arrows indicate the base prediction used as reference.
whereas values close to 1 indicate a strong reduction of the variability. From left to

nts), point cloud plus anthropometric, point cloud plus morphometric information.
to the web version of this article.)

e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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A similar behavior was observed with different combinations of
predictors, both on the femur and tibia models. Therefore, in the
following, we only report the results corresponding to the simpler
and faster PCA method.
Fig. 7. Example of shape fitting results (C0) using only the sparse observation data
represented by the green dots on the images, (C1) using gender, height, age and
weight information, (C2) using height, age, weight and intercondyle distance. The
direct comparison of shapes is made difficult due to uncertainties in the estimation
of the rotation parameters. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 2
General quality metrics, and shape specific ones. For the latter, both the average error
and the Pearson correlation coefficient are given. (C0) using only the sparse
observation data represented by the green dots on the images, (C1) using gender,
height, age and weight information, (C2) using height, age, weight and intercondyle
distance.

C0 C1 C2

Average distance 43.05 mm 28.32 mm 35.76 mm
Standard deviation 29.2 18.8 24.3
Femur length �16.0 mm �0.4 mm �7.5 mm

(R = 0.31) (R = 0.74) (R = 0.61)
Intercondyle distance �4.2 mm �1.6 mm 0.11 mm

(R = 0.05) (R = 0.45) (R = 0.99)
Neck length �1.7 mm 0.17 mm �0.38 m

(R = 0.42) (R = 0.74) (R = 0.64)
Head diameter �2.4 mm �0.91 mm �1.6 mm

(R = 0.52) (R = 0.70) (R = 0.69)
Neck/shaft angle �4.1� �1.0� �2.3�

(R = 0.16) (R = 0.27) (R = 0.26)
Anteversion angle 1.7� 0.95� 0.99�

(R = 0.21) (R = 0.33) (R = 0.19)
4.2. Shape estimation using different sets of predictors

In this experiment, we investigate the influence of the different
predictors on the shape prediction accuracy in a more localized
fashion by computing the average prediction error at each shape
point. We compare the LOO variability using:

1. No predictors (generalization ability of the SSM).
2. Anthropometric predictors only.
3. Morphometric information only.
4. Surface information only.
5. Surface information and anthropometric predictors.
6. Surface information, anthropometric and morphometric

predictors.

Furthermore, in order to gain a better understanding of the com-
plementarity or redundancy of the various predictors being consid-
ered, the variances of the point-wise prediction error distributions
observed using different combinations of predictors are compared.
The following ratio allows us to directly quantifies their relevance
in a localized fashion:

D ¼ 1� varðbY X � YÞ
varðbY R � YÞ

; ð16Þ

with varð�Þ the variance operator and bY X the predicted shape using
predictor set X, bY R the prediction obtained using a reference predic-
tor R. When no predictor is used, bY R is replaced by the mean model
mY , and D corresponds to the coefficient of determination. Equation
(16) reflects a low relevance of the predictor set eX with respect to
the reference variance when D is low, and high predictive value of
the predictor set when it is close or equal to 1.

The summary of the prediction errors for both models, and for
various combinations of predictors are presented in Figs. 5 and 6.
On the first row, the distribution of the prediction errors (after
optimization of the parameters of the regression methods) are dis-
played. The meshes on the second row show the localized, point-
wise average prediction error, while the third row shows the
reduction of uncertainty allowed by the corresponding predictors.
These figures illustrate how localized the effects of the different
predictors are, and especially how the information can be com-
bined to improve the prediction accuracy. On each figure, the ar-
row pointing from experiment i to experiment j indicates that
the experiment j is taken as the baseline for computing the coeffi-
cient of determination and is therefore used as the denominator in
(16). For example, compared to using point cloud information
alone, the utilization of both point cloud and anthropometric pre-
dictors does not result in significant improvements.
4.3. Shape fitting

Finally, we consider the complete problem of shape fitting,
including the estimation of correspondences between the observa-
tion data and the shape model, and the pose and shape parameters.
For correspondence establishment, we use an ICP algorithm be-
tween the observation point cloud and a subset of the shape model,
restricted around the femur head and neck to add some constraints
to the problem. When anthropometric is used, we first compute
the conditional shape distribution given the anthropometric data
(gender, height, age and weight), using the multivariate Gaussian
Please cite this article in press as: Blanc, R., et al. Statistical model based shap
gates: Application to orthopaedic research. Med. Image Anal. (2012), http://dx
model described in Section 3.4.1, and apply the shape fitting
algorithm.

Since the observation data we use are very sparse (see Fig. 2),
large errors can be expected on the rotational components of the
pose estimation. Indeed, when the observations are restricted to
one end of an elongated shape, small errors in the estimation of
the rotation lead to large errors in shape parts far away from any
observation, as can be observed in Fig. 7. Therefore, in addition
to the point-wise prediction error, we also evaluate the morpho-
logical measurements described in Section 2.2 and consider them
as pose-independent goodness-of-fit measures. The results in
Table 2 indicate that a significant improvement is obtained in
terms of shape fitting when complementing the sparse observation
data with additional information, in terms both of general and
shape specific metrics. Note that for experiment C2, the intercon-
dyle distance is used both as a predictor and a control variable.
However, the control value is measured by the distance f3–f4
(see Fig. 1), which is not directly enforced by the regression. In-
deed, the shape prediction method only relies on the statistical
relationship between the surrogate variable and the shape model,
e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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following dimensionality reduction. The very high accuracy and
correlation observed in this experiment can therefore be viewed
as a measure of the quality of the statistical shape model and of
the regression method employed.
5. Discussion and conclusions

On a methodological point of view, none of the regression ap-
proaches investigated here showed a clear benefit compared to
the others in terms of prediction error. Relying on CCA, fewer modes
were necessary to perform accurate predictions, but the additional
computational burden clearly plays against this approach. Finally,
the comparison with the non-linear kernel regression tends to indi-
cate that it remains safer to stick to simpler models, at least unless
more specific information is available for guiding the estimation of
non-linear model or more data is available.

As can be seen on both Figs. 5 and 6, especially the coefficient of
determination on the third row, a progressive improvement in the
prediction is observed when adding more predictors, indicating
that they bring complementary information. The locality of the
information is clearly displayed. Obviously, point predictors bring
much information about the areas in the vicinity of these points.
However, for the type of point predictors considered here, not
much information is gained about more distant locations. On the
contrary, anthropometric predictors and especially the patient
height, have a more global effect, due its correlation with the
highly variable bone length. Morphometric information proved to
be highly valuable, acting directly on specific and localized aspects
of the bone morphology, and can potentially provide rich comple-
mentary information compared to the point predictors alone.

The localized coefficient of determination appears as an effec-
tive mean to easily display the added value of particular predictors
or combinations of them. We believe it can be an efficient tool for
investigating precisely which predictors are worth measuring for a
specific application, like planning a specific minimally-invasive
intervention in which limited intra-operative data may be ac-
quired. However, since it is based on the variability of the shape
model, which does not incorporate any uncertainty related to the
position of the model, this statistics cannot be used for the inves-
tigation of complete shape fitting experiments as in Section 4.3.

The last experiment confirms that, even when very sparse
observation data are available to guide the shape fitting, the
exploitation of additional information such as anthropometric data
proves very relevant. While the observation data leave substantial
uncertainty on the pose parameters, as illustrated in Fig. 7 by the
poor accuracy in the knee area, both the average prediction error
and the pose-independent morphometric measures indicate a sig-
nificant improvement when using this additional data. Since such
data are easily accessible, we advocate that they should be system-
atically collected and exploited when constructing and utilizing
statistical shape models.
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Appendix A. Practical implementation of the regression
techniques

The operations required for performing eigenvalue decomposi-
tion or generalized eigenvalues decomposition can present high
computational and memory costs when the dimensionality of the
Please cite this article in press as: Blanc, R., et al. Statistical model based shap
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shape becomes large and tend to become unstable. Taking advan-
tage of the SVD, PCA can be performed efficiently. Algorithms such
as NIPALS or SIMPLS (de Jong and March, 1993) also exist, and al-
low an iterative resolution of eigenvalues problem, which also al-
low to keep the computational burden affordable for large
models (Hubert and Branden, 2003). Unfortunately, no such fast
and robust algorithm was found in the literature concerning CCA.
In the context of statistical models, a number of papers (Rao
et al., 2008b; Liu et al., 2004b) suggest to perform PLS or CCA after
an initial PCA based dimensionality reduction of both X and Y. This
means that the data matrices X and Y are replaced by (much smal-
ler) matrices of parameters eX and eY approximating them. It is clear
that after retaining only the singular values of X which are suffi-
ciently large, the covariance matrix eX ~XT=ðn� 1Þwill be of full rank,
and an OLS regression is then possible. Applying one of the sub-
space methods above can then only be interpreted as filtering
remaining noise. The theoretical benefits of PLS or CCA may also
be lost since this initial dimensionality reduction is performed
without any regard to the statistical dependences between X and
Y. We therefore recommend, if this first dimensionality reduction
step is necessary, to keep the maximum number of dimensions
in the initial PCA (usually n-1, where n is the number of training
samples, e.g. using the ‘‘economy’’ size SVD of the data), before
using PLS or CCA. For all the methods above, we optimized the
number r of retained modes. Additionally, an additional regulariza-
tion parameter k was introduced whenever a matrix needed to be
inverted, by replacing ðTT

r TrÞ�1 by ðTT
r Tr þ kIÞ�1, so as to get an easy

comparison with ridge regression. This parameter was also opti-
mized. In order to get more insight on the influence of r and k, a
simple grid search optimization was employed. All optimizations
were carried out using systematic leave-one-out experiments.
The function actually being optimized, was the average distance
between every point of the predicted shape to its true counterpart.
In the case where the predictors contained points of the shape, we
predicted only the missing points. The final shape was formed by
using both observed and predicted points, and projecting the result
within the original space of the statistical shape model. Whenever
gender was used as a predictor, the training matrices X and Y were
replaced by the corresponding subset of training samples sharing
the same gender. Kernel regression was performed as described
in (Blanc et al., 2009), using the conditional expectation as the pre-
dicted shape. Finally, we compared the results with those obtained
by calculating the conditional distribution assuming a joint Gauss-
ian distribution between the predictors and the shape.
Appendix B. Definition of morphological surrogate variables for
Femur

The frontal and transversal planes are commonly created to aid
the definition of landmarks (Schünke et al. (2006)).

Frontal plane: passing through the two most posterior points of
the medial and lateral condyles (Fig. 1, f3 and f4) and the most pos-
terior point of the lesser Trochanter (Fig. 1, f9).

Transversal plane: Perpendicular to the femur frontal plane and
passing through the two most distal points on the medial and lat-
eral Condyles.

� Bone Length. Bone length is defined as the distance between the
most proximal point of the great trochanter (Fig. 1-f5) and the
intersection point (see Fig. 1-f6) between the axis perpendicular
to the transversal plane and passing across the head center
(Fig. 1-f2), and the transversal plan.
� InterCondyle Distance (ICD). The inter-condyle distance is

defined as the distance between the two most posterior points
on the medial and lateral condyles (see Fig. 1, f3–f4).
e prediction from a combination of direct observations and various surro-
.doi.org/10.1016/j.media.2012.04.004
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� Neck Length. The neck length is defined as the distance between
the most medial and lateral points of the caput femoris axis,
which is defined as the intersection of the head center (Fig. 1-
f2) and the femoral neck center (Fig. 1-f1).
� Caput Collum Diaphysis (CCD) angle (h). The angle of the caput

femoris relative to the femoral proximal axis, projected on the
frontal plane. The femoral proximal axis is defined as the inter-
section of the middle points at 2/10ths and 3/10ths of the femur
length (Fig. 1, f7 and f8, respectively).
� Neck Anteversion Angle (a). It describes the angle of the caput

femoris (Fig. 1, f1–f2) relative to the frontal plane (Fig. 1, f3–
f4), projected on the transversal plane.
� Neck-Trochanter line angle (b). Angle relative to the frontal

plane between the femoral neck line and the major and lesser
trochanter line. See (Fig. 1, f1–f2).
� Trochanter-Fovea distances. The distances between the major

and lesser trochanter to the fovea capitus. See Fig. 1, f5–f10
and Fig. 1, f9–f10, respectively.

Appendix C. Definition of morphological surrogate variables for
Tibia

The frontal and transversal planes are commonly created to aid
the definition of landmarks (Schünke et al. (2006)).

Frontal plane: passing through the two most posterior points of
the medial and lateral condyles (Fig. 1-t4 and corresponding med-
ial point) and the most posterior point of the distal tibia.

Transversal plane: Perpendicular to the tibia frontal plane and
passing through the two most medial–lateral points on the medial
and lateral tibial condyles, respectively (Fig. 1, t5–t6).

� Tibia Length. The tibia length is defined as the distance between
the most superior point on tibia (Eminentia intercondylaris,
Fig. 1-t1) and the center point of the ankle from the facies artic-
ularis inferior (Fig. 1-t2).
� Plateau Height. The plateau height is defined as the distance

between the most anterior point to the most posterior point
on the tibia plateau (Fig. 1, t3–t4).
� Plateau Width. The plateau width is defined as the distance

between the most medial point and the most lateral point on
the tibia plateau. (Fig. 1, t5–t6).
� Plateau Slope (U). Angle from the line connecting the medial

and lateral tibial condyle to a plane perpendicular to the trans-
versal plane.
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