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Abstract. Kidney-related diseases have incrementally become one
major cause of death. Glomeruli are the physiological units in the kidney
responsible for the blood filtration. Therefore, their statistics including
number and volume, directly describe the efficiency and health state of
the kidney. Stereology is the current quantification method relying on
histological sectioning, sampling and further 2D analysis, being labori-
ous and sample destructive. New micro-Computed Tomography (μCT)
imaging protocols resolute structures down to capillary level. However
large-scale glomeruli analysis remains challenging due to object identifi-
ability, allotted memory resources and computational time. We present
a methodology for high-throughput glomeruli analysis that incorporates
physiological apriori information relating the kidney vasculature with
estimates of glomeruli counts. We propose an effective sampling strategy
that exploits scalable sparse segmentation of kidney regions for refined
estimates of both glomeruli count and volume. We evaluated the pro-
posed approach on a database of μCT datasets yielding a comparable
segmentation accuracy as an exhaustive supervised learning method.
Furthermore we show the ability of the proposed sampling strategy to
result in improved estimates of glomeruli counts and volume without
requiring a exhaustive segmentation of the μCT image. This approach
can potentially be applied to analogous organizations, such as for exam-
ple the quantification of alveoli in lungs.

1 Introduction

Kidney-related diseases have incrementally become an important public health
issue worldwide. According to the International Federation of Kidney Founda-
tion, chronic kidney disease is an important cause of death. Yet the underpin-
ning mechanisms are still poorly understood. In general, the kidney is the organ
responsible for urine production through filtration units called glomerulus. The
statistics associated with glomeruli are crucial since they are in direct relation
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with the state, efficiency and filtration power of the kidney. However, the cur-
rent standard for quantification of these structures relies on stereology, which
involves a very time-consuming and costly manual analysis of each histological
section, and therefore is not carried out by most laboratories.

In the last years, due to further development of micro-Computed Tomography
(μCT), it is possible to resolute structures down to capillary level. Supervised
machine learning algorithms have been used to tackle the automation task of the
quantification process. Rempfler [11] and Schneider [12] performed image seg-
mentation based on supervised random forest (RF) with vessel completion under
physiological constrains for brain networks. However, the segmentation task in
general remains challenging due to large scale datasets with scarce labelled data
for model training, as well as a poor distinction between glomeruli and other
structures such as capillaries.

We propose an efficient approach for large-scale glomeruli analysis of μCT
kidney images exploiting physiological information. The key idea is to model the
relationship between the kidney vasculature topology and the glomeruli counts.
This relationship is based on the allometry (i.e. proportions) between parental
and children vessel radii along the vascular tree, allowing us to derive glomeruli
count bounds. This bound serves as initialisation of an iterative sampling strat-
egy that incrementally updates estimates of the glomeruli number and their
total volume. The update step proceeds on selected regions with semi-supervised
segmentation, which relies on sparse-reduced computation [1], suitable for high-
throughput data. We report results on a database of μCT kidney images, com-
paring it to an exhaustive RF-based segmentation method. We demonstrate the
ability of the sparse sampling strategy to provide accurate estimates of glomeruli
counts and volume at different levels of image coverage.

2 Methods

We first start with a brief description of the kidney morphology, followed by
descriptions of the main steps depicted in Fig. 1.

Biological landmarks. The overall kidney structure consists of two large
regions: medulla and cortex. Only within the latter glomeruli are uniformly dis-
tributed [3]. The natural boundary between those two regions is roughly delin-
eated by the vascular tree. In turn, the kidney vasculature consists of two trees
(i.e. arterial and venal tree) connected in series, where the joining points corre-
spond to the glomeruli. For glomeruli analysis, the arterial tree is of interest [3].

Preprocessing: Vasculature tree separation. As only a coarse description
of the vasculature tree is necessary, simple thresholding and connected com-
ponent analysis were adopted in this study, and resulted in an effective and
practical solution. We observed that downsampling the image (by a factor of 8
per axis) does not affect the main topological features, since we are interested
only in the split proportions between main large branches, while providing a
computationally efficient solution.
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Fig. 1. Main steps of the proposed pipeline: from the raw image, physiological relations
of the kidney vasculature are extracted, serving as inputs for an estimation of counting
bounds. These are then updated by segmentation within an iterative sampling scheme
resulting in new glomeruli count and total volume estimates.

Vascular tree parametrization and medulla extraction. The input image
is skeletonized by a 3D medial axis thinning algorithm. From the skeleton, a
graph is constructed using Kerschnitzki’s approach [8]. The leaves (i.e. terminal
nodes) of the graph serve as landmarks of the boundary between cortex and
medulla. Hence, they are used as point cloud for a convex hull that partitions
the kidney into medulla and cortex regions. This reduces the search space to
about 60 % of the total kidney volume. In the next step, we will show how the
obtained vascular tree parameterization is used to derive bounds for glomeruli
counts.

Deriving bounds for glomerular counts. Following the minimum work prin-
ciple [9,10], Murray’s law relates the children branch radii with their parental
branch radius, as rγ

p = rγ
c1 + rγ

c2 with γ = 3, where rp denotes the radius of
the parental branch and rci the i-th child branch radius. Sherman [13] reports
a corresponding exponent value of 2.61 for arteries and 2.76 for veins. For our
purposes we use a general version with γ ∈ [2,∞+), which allows for convexity.
Without loss of generality, we reparametrise the radii relation into the analogue
circle cross-sectional area A = πr2. This parameterisation provides us with a
robust estimation of the equivalent radii, because the area in the image is less
prone to a chosen orientation than the radius. Straightforward calculations give
the rule A

γ/2
p = A

γ/2
c1 + A

γ/2
c2 . Assuming a dense and symmetrical binary tree,

we obtain by recursion the following relation between the parental and the K-th
grand-child branches:

A
γ/2
1 =

2K∑

i=1

A
γ/2

i+2K
for K ∈ N, Ai ∈ R

+ , (1)

where K refers to the depth of the tree, A1 is the largest parental circular
cross-sectional area and Ai+2K is the i-th grand-child circular cross-sectional
area at the K-th tree depth level. Under the identical and independent distri-
butional normality assumption of circular cross-sectional area per K-th depth
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level Ai+2K ∼ N (AK , σ2
AK

), we have E [Ai+2K ] = AK . Applying linearity of the
expectation operator E [·] and Jensen’s inequality for convex functions (hence the
necessary condition γ ∈ [2,∞+)) on Eq. (1), we obtain after simple calculations

N = 2K ≥ E

[
A

γ/2
1

]
· A

−γ/2
K ≥

(
AI

AK

)γ/2

, (2)

where K specifies the expected depth of the arterial tree and N the expected
number of glomeruli for a tree with K depth level. Here AK is the cross-sectional
area at the K-th terminal level corresponding to the expected cross-sectional area
of the entry capillary into the glomerulus and AI denotes the expected cross-
sectional area at the largest parental arterial vessel (i.e. AI > Ai > AK > 0).

Determining number of sampled regions for segmentation. Let us con-
sider a fixed known partition of B regular regions and drawing b sample regions
with equal inclusion probability [14]. In order to determine the number of sample
regions, one can derive the required quantity from the bounded probability of an

unbiased estimator for the total number of events N̂ : P
(

|N̂−N |√
V[N̂ ]

> zα/2

)
= α,

where |N̂−N |√
V[N̂ ]

∼ N (0, 1) for a desired confidence level α (α = 5% as customary

for statistical hypothesis testing). One specifies an absolute error d on the total

number estimator (i.e. zα/2

√
V[N̂ ] ≤ d), and then solving for b gives

b =
1

1/b0 + 1/B
, where b0 = σ2

(
Bzα/2

d

)2

, (3)

where V [·] denotes the variance operator, the hat notation (̂·) refers to estimators
and σ2 is the population variance of the total number, which can be obtained
from previous studies or estimated from training data.

Scalable glomerular segmentation using sparse computation. Knowing
the number of sampled regions b (Eq. (3)), uniform regions are extracted and
segmented. In order to address the issue of scalability and the use of unlabelled
data in large image volumes, we draw upon sparse-reduced computation (SRC)
for efficient graph-partitioning introduced by Baumann et al. [1]. Sparse-reduced
computation creates a compact graph representation of the data with minimal
loss of relevant information. This is achieved by efficiently projecting the fea-
ture vectors onto a low-dimensional space using a sampling variant of principal
component analysis. The low-dimensional space is then partitioned into grid
blocks and feature vectors that fall into the same or neighbouring grid blocks
are replaced by representatives. These representatives are computed as the cen-
ter of mass of the feature vectors they represent. The graph is then constructed
on the representatives rather than on the feature vectors which significantly
reduces its size. The segmentation for the representatives is obtained by apply-
ing Hochbaum’s normalized cut (HNC) [7], which can be solved in polynomial
time while the normalized cut problem is NP-hard.
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Iterative count refinement: unbiased estimators for total number and
total volume of glomeruli. We can iteratively refine our estimates by including
more segmented subvolumes b as a function of a target confidence of the glomeruli
counts and volume estimates. To this end, in this study we adopted a bootstrap-
ping replication scheme [6]. Based on unbiased estimators for totals with equal
inclusion probabilities with uniform random sampling without replacement [14],
we obtain for each j-th replication

N̂j = Bȳbj =
B

b

b∑

i

yij and V̂j = Bv̄bj =
B

b

b∑

i

vij ∀j ∈ J (4)

V̂[N̂j ] = B2
V̂[ȳbj ] = B(B − b)

s2
N̂j

b
and V̂[V̂j ] = B2

V̂[v̄bj ] = B(B − b)
s2

V̂ j

b
,

where N̂j and V̂j are unbiased estimators for total glomerular number and vol-
ume, respectively. yi and vi are the actual glomeruli counts and the segmented
volume, both on the i-th segmented region. Empirical booststrap distributions
are generated from J estimate replications, which are drawn with replacement,
and hence confidence intervals are constructed for the mean number ˆ̄N and
mean total volume ˆ̄V estimators, in order to assess their quality in terms of
their statistical consistency: unbiasedness and low variability.

3 Results

Data source and experiments. Our database consisted of 9 right kidneys
belonging to two groups: 5 healthy mice and 4 GDNF+/− mice, which are
genetically modified, and known to have about 30 % fewer glomeruli and smaller
kidney volume [4,5]. The volume size ranges from 1 K × 2.5 K × 4 K up to
3 K× 4 K × 6 K voxels, which corresponds to 30–80 GB. The isotropic size of a
voxel is 2.6µm. We performed two experiments: (1) Evaluation of the sparse-
reduced semi-supervised segmentation, (2) Evaluation of the iterative sampling
scheme. In experiment (1) we generated ground-truth by manually annotating a
reduced region of interest of size 512×512×141 and compared the sparse-reduced
semi-supervised segmentation to an exhaustive RF segmentation.

Experiment 1. We evaluated the performance of sparse-reduced computation
with different grid resolutions. Figure 2 illustrates the process of sparse-reduced
computation for a manually segmented region which comprises 36 million voxels.
Rather than constructing a complete graph with 36 million nodes, the sparse-
reduced computation approach constructs a much smaller graph by consolidat-
ing highly-similar voxels into a small number of representatives. The reduced
graph contains a node for each representative. The segmentation for the rep-
resentatives is obtained by applying Hochbaum’s normalized cut (HNC) [7] to
the reduced graph formed by edges connecting only representatives. The labels
that are assigned to the representatives are passed on to each of the voxels that
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Fig. 2. Sparse-reduced computation for semi-supervised segmentation. Left: Projection
of feature vectors onto a 3-dimensional space. Right: Partitioning of 3-dimensional
space into blocks and generation of representatives. Similarities are only computed
between representatives of the same and neighboring blocks. This provides a significant
reduction in computational complexity.

they represent. In this study, we used standard first and second order statistics
intensity information as features (i.e. mean, quantiles, entropy, gradient, etc.).

We compared the sparse-reduced computation approach to an exhaustive RF
based segmentation method [2] with 100 trees, depth = 18, and the same set of
19 features. In order to simplify the evaluations, no attempt to regularise the
segmentation result was performed.

In Table 1 we report the overall performance for different grid resolutions
in terms of accuracy, precision, recall, and F1score. The grid resolution deter-
mines the number of divisions of each axis (e.g. 5 divisions per axis, cf. Fig. 2
right side), and hence it controls the total number of grid blocks. The results
were compared with the exhaustive RF segmentation method. From Table 1 it
is observed that higher grid resolutions yield better segmentation results, influ-
encing most notably on accuracy and F1score, up to a saturation point between
grid size 10 and 15. In terms of computation load, the increase is negligible as
the number of representatives is substantially low for all resolutions. In compar-
ison to the exhaustive RF-based segmentation, the results are competitive and
attractive in light of scenarios where labelled data and memory resources are
limited.

Based on the results from this first experiment, we regarded the segmentation
from the exhaustive RF-based method as a silver ground-truth to evaluate in
experiment 2 the reliability of the iterative sampling scheme. The RF segmenta-
tion was fully run on the 9 datasets and then a visual inspection was performed
for sanity check. Minimal manual corrections were needed.
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Table 1. Segmentation performance of sparse-reduced computation at different grid
resolutions, and RF-based segmentation. Best results of SRC are in bold.

Experiment Accuracy Precision Recall F1score

Sparse - grid resolution 5 0.9829 0.736 0.284 0.41

Sparse - grid resolution 10 0.9858 0.618 0.843 0.713

Sparse - grid resolution 15 0.9864 0.661 0.719 0.689

Sparse - grid resolution 20 0.985 0.664 0.576 0.617

Exhaustive random forest 0.99 0.761 0.793 0.777

Experiment 2. In this experiment we are interested in evaluating the unbi-
asedness (consistency) and efficiency of both glomeruli count and total volume
estimators for different number of segmented sampled regions, reformulated as
kidney volume coverage from 5% up to 80%. We considered J = 10 bootstrap
replications in order to derive bootstrap empirical distributions and construct
bootstrap confidence intervals for the mean estimators. Figure 3(a)–(b) show the
decrease in the total volume and count errors as more volume is covered, with
values ranging from 6% down to 1% for volume and count error. This is consis-
tent with the unbiasedness property of the estimators. Furthermore, it also shows
an increase in efficiency, depicted by the reduction of the estimator variance as
larger volume is covered.

(a) Error on glomeruli total
volume (%)

(b) Error on glomeruli total
count (%)

(c) Glomeruli total counts
per group

Fig. 3. Iterative sampling scheme: performance of mean total and mean total volume
estimators as a function of volume coverage for the complete 9 datasets (a)–(b), and
mean total counts per group (c): healthy and genetically modified GDNF+−. The
central solid line corresponds to the mean estimation. Confidence intervals at levels
α = 0.05 and α = 0.2 are shown as shaded areas.

Figure 3(c) depicts that the mean total count estimate separates into the
healthy and the genetically modified GDNF+− groups. We identify the nearly
30% mean difference in total glomeruli number, as reported in the litera-
ture [4,5]. Note that the bootstrap confidence intervals for the mean total count
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estimator do not overlap between groups, which suggests that the statistical
efficiency (i.e. low variance) of the estimator allows researchers to discriminate
groups in studies involving GDNF+− subjects, as disease model.

4 Discussion and Conclusion

In this study we have presented a fast and efficient iterative sampling strat-
egy to quantify glomeruli in large μCT kidney images. In contrast to previous
approaches, we combine estimators of volume and counts with a scalable and
computationally efficient semi-supervised segmentation approach. The proposed
pipeline exploits physiological relations of kidney vasculature and glomeruli
counts and volume, and yields fast and statistically efficient estimators with
accurate estimates of them. The iterative nature of the approach allows users
to define a trade-off between accuracy of the estimations and computational
complexity, up to a desired level. The sparse-reduced computation is suitable
for large image volumes for which annotated data is typically scarcely available,
while yielding competitive results with standard supervised RF-based segmenta-
tion approaches. The method features high scalability through an efficient com-
putation of similarities among representatives. The proposed approach can be
extended for high-throughput analysis of structures in large-scale images. Also
it can potentially be applied to analogous organizations, such as for example the
quantification of alveoli in lungs.
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