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    Chapter 5   
 Computational Image-Guided Technologies 
in Cranio-Maxillofacial Soft Tissue Planning 
and Simulation       

       Mauricio     Reyes     ,     Kamal     Shahim    , and     Philipp     Jürgens   

    Abstract     Due to the complexity and unpredictability of cranio-maxillofacial 
(CMF) surgery, computer simulations have been proposed to assist the surgeon in 
the decision-making process of surgical planning. Current planning solutions 
require the use of different and unconnected tools to account for the necessary 
balance and interplay between functional and aesthetic aspects of CMF surgery, 
which ultimately makes an effective combination and analysis of the information 
diffi cult. In this article we present current approaches and new trends suggested to 
alleviate these issues and to promote the development of clinically relevant and 
seamless, yet effective, computational solutions for CMF surgical planning.  

  Keywords     Neurosurgical procedures   •   Computer assisted systems   •   Preoperative 
planning   •   Intraoperative navigation   •   Charge coupled device   •   Dynamic reference 
frame  

        Introduction 

    Cranio-Maxilofacial Surgery 

 Cranio-maxillofacial (CMF) surgery is a surgical specialty that deals with the 
treatment of inborn or acquired facial disfi gurements. These conditions can be such 
as cleft lip- and palate, craniofacial malformations, aftermath of facial trauma or of 
ablative tumor surgery. Surgical interventions in the CMF area and even their plan-
ning make high demands on the spatial sense of the surgeons. 
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 This is on one the hand due to the close proximity of highly vulnerable anatomi-
cal structures and on the other hand due to the complex morphology of the region. 
Modern image-guided techniques are the basis for diagnostics, therapy and 
documentation. These technologies enable us to produce patient-specifi c models of 
the clinical situation. They give us the possibility to perform accurate planning and 
transfer the planning to the operation theatre. These technologies have made their 
way into the clinical routine of highly advanced treatment centers [ 1 – 5 ]. One of the 
most evident indications for the use of virtual planning tools in CMF Surgery is the 
planning of surgical intervention for patients suffering of malocclusion. Malocclusion 
can either be caused by a malposition of teeth in the level of the alveolar crest or by 
an incorrect positioning of the upper and lower jaw relative to each other. For the 
former, an orthodontic treatment will deliver satisfactory results. For the latter, only 
a surgical procedure will provide a causal therapy. These interventions are called 
orthognathic surgeries and their aim is to change the position of the maxillary and 
mandibular bone, relative to each other and to the skull base. As these interventions 
are highly elective, an accurate and extensive preoperative planning has to be 
conducted. 

 To update the planning procedure several systems for virtual three-dimensional 
visualization and procedure planning based on volume datasets have been recently 
introduced in some clinical centers, routinely substituting the conventional two- 
dimensional cephalogram based planning-approach, and especially improving the 
prediction of soft tissue deformations [ 6 ]. In order to ensure an optimal pre-opera-
tive skeletal planning of the patient with his postoperative facial appearance, a 
highly reliable and accurate prediction system is required. In order to realize the 
pre- operative surgical plan in the operation theatre, the planning and prediction soft-
ware should be linked to a navigation system for the intra-operative control of the 
relocation of the upper and lower jaw.  

    Image-Guided in CMF Soft-Tissue Surgical Planning 

 Over the last 20 years computer-assisted surgical simulation and intervention 
planning has made its way into clinical routine in CMF surgery. Due to the close 
proximity of highly vulnerable structures in the viscero-cranium region, virtual 
planning has been used to create highly accurate three-dimensional (3D) models of 
the patient’s anatomy and clinical scenario (virtual osteotomies, cephalometric 
analysis, etc.). Furthermore, in CMF surgery the complexity of the surgical scenario 
is enhanced by the diffi culties to predict soft-tissue variations from bone relocations 
due to the low correlation between hard-, and soft-tissue variations [ 7 – 10 ]. This 
makes the surgical plan very challenging and highly dependent on the surgeon’s 
experience. This has led to the development of computer simulations, which provide 
a unique tool to predict the surgical outcome. With these tools, surgeons are able to 
pre-operatively assess the implications of various surgical scenarios (bone 
relocations). However, several defi ciencies presumably stemming from the lack of 
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interdisciplinary work between scientists and medical practitioners still exist. The 
following summarizes the main technical challenges in CMF soft tissue simulation. 

 The basic components for CMF soft-tissue simulation are:

•     Geometrical modeling of hard and soft tissues from Computed Tomography (CT) 
medical images.   

•    Physical models employed to realistically link the internal stress and deformation 
of tissues.   

•    Realistic modeling of external forces and constraints to establish a connection 
between internal deformation and applied forces.   

•    Fast and reliable solver for the resulting differential equations.     

 The generation of patient-specifi c models involves the task of semi- or fully- 
automatic segmentation of hard and soft tissues. Research in automatic segmentation 
of the facial soft tissues is, however, still in its infancy. The segmentation of facial 
soft tissues from diagnostic Computed Tomography (CT) or Magnetic Resonance 
Images (MRI) is thus still an active research area [ 11 – 14 ]. There are several aspects 
that make the segmentation a complex task. First, the facial region is one of the most 
complex anatomical regions of the human body. Second, most of the facial muscles 
are paper-thin and often even smaller than the voxel resolution of the imaging 
device, which leads to partial volume effects. Lastly, the complexity of the 
segmentation task is further increased by imaging noise and poor contrast (in 
particular in cone beam computed tomography – CBCT); by the presence of high- 
density artifacts ( e.g.  from dental fi llings or implants), and muscles that are 
overlapping or in contact one with another. 

 As stated above, segmenting the facial soft tissues is in the mathematical sense 
an ill-posed problem and still a very active fi eld of research. In [ 15 ] Rezaeitabar 
et al .  proposed a specifi cally tailored region growing approach to segment two facial 
muscles  i.e.  the masseter and the temporalis. Ng et al. published a series of papers 
[ 16 – 18 ] where they described segmentation approaches for different facial muscles. 
Their methods are based on a Gradient Vector Flow (GVF) snake based approach. 
Kale et al. proposed in [ 19 ] a Bayesian and Level-set framework to segment facial 
soft-tissue from CT and MRI data sets. Through modeling of the partial volume 
effect they also tried to segment the very thin facial muscles. Drawback of the 
method is that they require a co-registered CT and MRI data set of the patient. 
Whereas CT is commonly available, MRI is generally not used and would only add 
to the costs of the intervention. 

 Once the segmentation is completed, a computer simulation can be executed to 
predict the deformation behavior of facial tissues following an orthognathic 
procedure. Computer-assisted facial soft-tissue simulation was originally intro-
duced by Terzopoulos et al. [ 20 ] and Lee et al. [ 21 ] where a simple mass-spring 
modeling (MSM), consisting of a multi-layered facial tissue was applied for soft 
tissue simulation in CMF. Keeve et al. [ 22 ] presented a MSM-based approach with 
prismatic elements, and compared the result with FEM simulations (Finite-Element 
Model) in terms of accuracy and computational cost. Zachow et al. [ 23 ] suggested 
a fast tetrahedral volumetric FEM, which can be used in clinical practice. 
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 Due to the high computational and modeling demands of advanced FEM meth-
ods, none of the proposed approaches have reached clinical routine and have only 
been used with clinical data through a dedicated setup where an specialist conducts 
the modeling and simulations, which are then presented and discussed back with the 
surgeon [ 24 – 28 ].  For clinical use, it is important to provide the surgeon with the 
ability to seamlessly test different surgical approaches without incurring into 
long computational times or overly complex modeling processes . From discus-
sions with opinion leaders and own experience, we believe that the surgeon needs to 
be in control of the surgical plan (as opposed to rely on back-and- forth interactions 
with an engineer) and should have appropriate tools (i.e. speed, usability and accu-
racy compatible with the clinical workfl ow) to plan the surgical procedure. 

 Cotin et al. [ 29 ] proposed a hybrid method using MTM (Mass-Tensor Modeling) 
for enhanced local deformations in simulation of liver surgery. Mass Tensor Modeling 
was later extended by Picinbono et al. [ 30 ] to consider non-linear, anisotropic elastic-
ity. Chabanas et al. [ 31 ] proposed a mesh-morphing algorithm to minimize the labori-
ous efforts in preparing fi nite-element meshes. Based on the seminal work of Cotin 
et al. [ 29 ], Mollemans et al. [ 32 ] fi rst applied MTM to CMF soft-tissue simulation, 
and evaluated the method qualitatively and quantitatively on ten clinical cases. From 
the simulation point of view, MTM has been widely accepted for CMF soft-tissue 
simulation due to its effi ciency, accuracy and low computational time. Similarly, 
GPU-based simulation models have been proposed to deliver fast mechanical simula-
tions [ 33 – 37 ]. Nonetheless, the integration of these methodologies to clinical routine 
is hindered by the lack of a complete solution that considers the clinical workfl ow and 
moreover provides an acceptable accuracy in the error sensitive regions of the face 
[ 38 – 42 ]. Furthermore, available commercial packages for CMF soft tissue simulation 
lack appropriate segmentation routines and rely on extensive manual corrections. 

 Developing clinically relevant solutions that counter accuracy limitations by 
bringing additional non-imageable anatomical and clinical information into the 
simulation workfl ow has shown to leverage the development of new technologies in 
CMF soft tissue simulation [ 43 – 49 ]. These implementations have resulted in an 
average simulation error of 1 mm, which is suffi cient for surgical planning. In this 
way, the simulation is capable of providing the surgeon with a post-operative sce-
nario, from which adaptations or changes to the surgical plan can be performed in 
order to prepare the patient for the changes in his/her appearance. In these 
approaches, however, the surgeon follows a trial-and-error scheme to determine the 
fi nal surgical plan that yields a satisfactory soft tissue outcome.  

    Functional Aspects in CMF Planning 

 In cranio-maxillofacial surgery the determination of a proper surgical plan that 
yields a desired aesthetic facial profi le while considering functional aspects of the 
post-operative scenario is very important for a successful treatment outcome. As 
described above, current solutions do not provide surgeons with tools to effectively 
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consider the complex interplay between aesthetic and functional aspects, which in 
light of the complexity of the surgical scenario makes the planning of CMF surgeries 
very diffi cult, and ultimately highly dependent on the surgeon’s experience. The 
functional aspects independently investigated in the literature are described below. 

 Functional aspects to be considered for the surgical plan include reestablishment 
of the dental occlusion through occlusion analysis [ 50 ]. This analysis requires the 
identifi cation and geometrical assessment of the upper and lower dental arches. The 
common clinical approach is to use dental casts to defi ne pre-operatively the desired 
occlusion, which is then transferred intra-operatively using a manufactured splinter. 
These approaches present some limitations, such as reduced spatial information 
with respect to the rest of the anatomy, as only a partial observation of the surgical 
scenario is represented. Furthermore they do not allow for a comprehensive analysis 
of the effects of the planned occlusion on surrounding hard and soft tissues [ 51 ]. 

 Computerized models haven been proposed to perform a virtual assessment of 
the occlusion. The accuracy of these models has been analyzed with respect to the 
different imaging parameters and processing steps [ 52 – 54 ], and improvements to 
deal with metal artifacts and low image resolution have been proposed by combin-
ing information from CT imaging and laser scanned dental casts [ 55 – 57 ]. 

 Virtual assessment of occlusion has been proposed by applying semi-, and 
automatic approaches using registration techniques incorporating collision con-
straints [ 58 – 60 ]. These approaches enable a precise alignment of the dental arches 
in a virtual scenario. However, they decouple the occlusion analysis from the other 
functional and aesthetic aspects of the surgical plan. 

 Another aspect of the surgical plan to be considered is the evaluation of the airways 
after orthognathic surgery. Several studies have analyzed the impact of different surgical 
plans (e.g. mandibular setback, advancement, bimaxillary, etc.) on the geometrical and 
volumetric changes of the upper and lower airways [ 61 – 69 ]. Similarly, these approaches 
do not consider the joint analysis of functional and aesthetics aspects of the surgical plan. 

 To obtain a clinically relevant solution including airway analysis, it is important 
to develop automatic or nearly automatic segmentation approaches that can be 
seamlessly integrated into a unique platform. 

 Airway segmentation is an active area of research since many years. Of particu-
lar interest are the segmentation techniques using CT images, see for example [ 70 ]. 
The main application has been the analysis of airways for geometric measurements 
or navigated interventions. With the availability of CBCT the need for semi- or even 
fully automatic airway segmentation has become essential for surgical plans 
incorporating this functional aspect. As CBCT mainly fi nds its application in the 
cranio-maxillofacial surgical fi eld, a heuristic approach was proposed in [ 71 ] for the 
analysis of the upper airway. In [ 72 ] a more elaborated snake-based method has 
been described to automatically segment the upper airway. 

 Due to the low radiation dose of CBCT, its use has recently attracted attention for 
CMF soft-tissue prediction. In [ 38 ] an evaluation of a commercial system for CMF 
soft-tissue prediction was conducted using CBCT data of patients undergoing 
orthognathic surgery. The study highlighted the marked simulation errors around 
the error-sensitive regions of the lips, as well as the importance of evaluating the 
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accuracy of the soft-tissue predictions on the different regions of the face, as opposed 
to an overall global evaluation over the entire face [ 73 ]. Nonetheless, the common 
agreement is that CBCT presents great opportunities for CMF soft-tissue prediction 
and surgical planning, and thus it should be further investigated [ 39 ].  

    Fast Patient-Specifi c Modeling 

 Generating patient-specifi c models has been a bottleneck in the CMF surgical plan-
ning pipeline. Current commercially available software tools typically rely on basic 
image thresholding techniques followed by cumbersome manual corrections. 
Moreover, the situation is worse when such approaches are used on CBCT images, 
as their low contrast hinders the task of image segmentation. It is therefore crucial to 
develop appropriate approaches for fast and accurate bone and soft tissue segmenta-
tion. One such approach employed for CMF planning has been the use of statistical 
shape modeling techniques, which learn from data the anatomical variability of the 
studies population [ 74 ]. When combining these approaches with domain-knowledge, 
where the user assists the automated approach by placing anatomically or surgically 
important landmarks, it is possible to realize a fast patient-specifi c modeling [ 75 ]. 
Furthermore, the topology-preserving feature of this approach enables incorporation 
of other type of valuable information used for modeling and simulation.  

    Dealing with Metal Artefacts: Spatially-Varying Gaussian 
Process Modeling 

 To deal with image artefacts in CBCT imaging, new modeling schemes are being pro-
posed. One of them is the so-called spatially-varying Gaussian Process Modeling [ 76 ]. 
In this framework, a-priori information on the localization of the metal artefacts can be 
encoded on the reference model and used during model morphing (see Fig.  5.1 ). In this 
way, noisy information stemming from the metal artefacts can be neglected and 
exchanged with the statistical information built in the statistical shape model driving 
the model morphing process. The framework, also available through the open source 
library Statismo [ 75 ], enables defi nition of different morphing models, allowing in turn 
defi nition of different transformation properties and features (Fig.  5.2 ).

        Seamless Surgical Planning: The Direct and Inverse 
Surgical Planning 

 Despite of the complexity of the surgical scenario, the available technologies must 
ultimately serve as a vehicle for the surgeon to plan the surgical plan in a seamless 
manner. It is thus crucial to develop technologies that leverage the work of the 
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  Fig. 5.1    Fast patient-specifi c modeling using statistical shape modeling techniques. A Reference 
skull is morphed to match the patient’s anatomy, as imaged via CT or CBCT, following population- 
level statistics and anatomical landmarks. A displacement vector fi eld ( DVF ) is then obtained 
allowing propagation of other type of information. As exemplifi ed in the lower part of the fi gure, 
facial muscle information can then be effectively estimated       
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Gaussian
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c d

  Fig. 5.2    Registration of skulls from CBCT data: ( a ) shows a slice through the image and a recon-
struction of the surface obtained using threshold segmentation. ( b – d ) show registration results 
obtained using different deformation models. The left images show a normal registration, while in 
the right images a spatially-varying registration has been used, showing the ability of the method 
to deal with metal artefacts       
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surgeon, allowing him to test different options and interact with the bone and soft 
tissue components of the surgical plan. 

 Recently, a shift paradigm was presented whereby the necessary planning is 
computed from the desired post-operative outcome [ 75 ]. This paradigm shift, coined 
 “Inverse Planning” , enables the surgeon to look at the surgical plan from a different 
perspective, allowing him to directly defi ne the desired outcome, without the need 
of the commonly used trial-and-error scheme available in current solutions.  

    Inverse Soft Tissue Modeling 

 The proposed approach employs a fast biomechanical model to derive from the 
desired facial outlook the necessary surgical plan. Based on the desired facial outlook 
the deformation of internal soft tissues is calculated, followed by constrained surface 
registration between bone segments and internal soft tissues. The proposed registra-
tion component considers collision and occlusion constraints, and its formulation 
allows us to derive in a straightforward manner different levels of interplay between 
quality of occlusion and compliance to the desired outlook (i.e. constraints relax-
ation). Furthermore, and in regards to a biomechanical simulation that would model 
the entire ensemble of bone and soft tissues, the proposed approach avoids known 
issues of layer detachment and convergence related to the high elasticity transition 
present at the interface of bone and soft tissue materials. We remark that this approach 
differs from the classical inverse modeling proposed in computational mechanics and 
used in implant shape design in [ 28 ], as our method deals with the ill-posedness of the 
problem by considering occlusion and geometrical constraints through a registration 
component that effectively penalizes the set of numerical solutions. 

 By combining the direct (i.e. soft tissue simulation from bone displacements) 
and the inverse soft tissue modeling (i.e. specifi cation of bone displacement to yield 
a desired outcome) it is possible to yield an effective system that, in a transparent 
way, enables the surgeon to work on the surgical plan. 

 Due to airways and tongue volume constraints in complex CMF cases, large 
rotational and translational planning are rarely operated in one single step and 
surgeons typically divide it into a series of surgeries, which in turns translates into 
small deformations in engineering mechanics. Nonetheless, to cover these rare 
cases for large deformation problems, we will consider modifying the classical 
FEM inverse approach [ 77 ] in which the inverse modelling is transferred to a direct 
problem by super-imposing boundary conditions and transferring the unknown set 
of displacements to the other side of the continuity equation [ 78 ]. 

 Preliminary results, shown on Fig.  5.3 , on a set of clinical cases showed in fi ve 
out of six CT cases a high level of agreement to the actual surgical plan. In one case 
the proposed approach was confi rmed to improve the actual executed plan. As an 
additional evaluation, simulated soft-tissue outcomes were compared using the 
predicted and real clinical plan, resulting in a close agreement between the facial 
simulation results using the predicted and actual planed approach (Fig.  5.4 .).
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         Discussion and Conclusions 

 The human face is a fundamental part of our identity. It centralizes the senses of 
vision, hearing, taste and smelling, and provides us with channels to participate and 
integrate in society. The complexity of the clinical scenario is complex, as it requires 
high understanding of the balance amongst aesthetic, functional, psychological and 
sociological implications of the surgical outcome. Furthermore, the degree of 
unpredictability on the surgical outcome makes the decision-making process, on a 
patient-basis, highly complex. This has called for the development of computational 
means to assist the surgeon on the task of planning the surgical approach. We 
believe, however, that more research efforts are essential and needed in order to 
bring these tools to a level where they can effectively and jointly consider aesthetic 
and functional aspects for the planning of CMF surgeries. 

 Based on the observations from the state of the art it can be concluded that func-
tional aspects are of importance and need to be considered in CMF planning. However, 
there is need to foster the interdisciplinary research with the development of novel 
approaches that concurrently make use of functional and aesthetic information, and are 
developed in light of the clinical requirements and workfl ow. In this regard, it is neces-
sary to enhance these enabling-technologies by developing advanced segmentation 

Define: facial outcome

Patient CBCT

Pre-operative
modeling

Define: Surgical plan Direct simulation:

Inverse planning:

Soft tissue prediction

Compute surgical plan

  Fig. 5.3    Direct-inverse planning approach. From the pre-operative CBCT scan, a detailed patient- 
specifi c model will be created. The surgeon then has the option to interact with the bone segments 
and perform a direct simulation for soft tissue prediction ( lower part of the fi gure ), or defi ne the 
desired facial outcome and obtain the required surgical plan, subject to functional considerations 
( upper part of fi gure ), and assisted by cephalometric guides (illustrated with  dashed lines ). A fast 
simulation enables the surgeon to seamlessly interact in one mode or the other       
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algorithms for CBCT imaging as well as algorithms allowing the surgeon to seamlessly 
interact with the surgical plan or the desired soft tissue outcome, all while jointly con-
sidering the functional and aesthetics aspects mentioned above.     
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