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Abstract. In contrast to preoperative brain tumor segmentation, the
problem of postoperative brain tumor segmentation has been rarely ap-
proached so far. We present a fully-automatic segmentation method using
multimodal magnetic resonance image data and patient-specific semi-
supervised learning. The idea behind our semi-supervised approach is to
effectively fuse information from both pre- and postoperative image data
of the same patient to improve segmentation of the postoperative image.
We pose image segmentation as a classification problem and solve it by
adopting a semi-supervised decision forest. The method is evaluated on a
cohort of 10 high-grade glioma patients, with segmentation performance
and computation time comparable or superior to a state-of-the-art brain
tumor segmentation method. Moreover, our results confirm that the in-
clusion of preoperative MR images lead to a better performance regard-
ing postoperative brain tumor segmentation.

1 Introduction

Brain tumors are a rather rare but fatal disease. The most common type of
primary brain tumors are gliomas, where the Glioblastoma (GBM) is its most
aggressive form with a median patient survival that ranges from 12.2 to 15.9
months [1].

The current approach for treatment of glioma patients involves primary tu-
mor surgery (resection) followed by combined radio- and chemotherapy. The
imaging modality of choice is Magnetic Resonance Imaging (MRI). Recent clin-
ical studies, such as e.g. [2], use manual, image-based volumetric analysis rather
than diameter-based measures for assessing the outcome of tumor surgery. Lately,
it has been shown that manual segmentation of postoperative GBM images is
being subject to large interobserver variability [3]. Fully-automatic segmentation
methods have the potential to resolve this issue.

High-grade gliomas such as GBMs can be subdivided into four different tumor
subcompartments: enhancing tumor, non-enhancing tumor, necrosis and edema
[5]. We are interested in segmenting residual enhancing tumor since knowledge
about its location and volume is of great clinical relevance. In radiation ther-
apy the enhancing tumor is used for defining the gross tumor volume to be
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targeted. Furthermore, the volume of residual enhancing tumor serves as an
inclusion criteria for chemotherapy [4] and correlates with patient survival [2].
The segmentation of postoperative brain tumor images is more challenging than
segmenting preoperative images for various reasons such as:

– Hemorrhages (caused by surgery) may appear hyperintense on T1-weighted
MR images which can lead to confounding with enhancing tumor.

– Depending on the amount of blood degradation products contained in the
resection cavity, the appearance of the cavity can be confounded with the
appearance of necrosis or edema.

– The appearance of the postoperative image is influenced by factors that can
not be straightforwardly included in a computational model (such as e.g. the
experience and skill of the neurosurgeon). From a statistical learning-based
point of view these additional (when compared to preoperative images), ex-
ternal influences can be seen as additional dimensions of our feature space.
Informally, one can then say that for having the same predictive perfor-
mance on postoperative images as for preoperative images, a larger number
of training samples is needed (curse of dimensionality).

In this work, we rely on multimodal MR images for discriminating hemorrhages
from enhancing tumor. We do not attempt to model external influences on the
image appearance. However, we try to minimize the overall complexity by em-
ploying a machine learning-based model that is patient-specific. In other words,
we try to solve the present image segmentation by direct inference (i.e. solving it
for one patient at a time) rather than induction (i.e. inferring a ‘general’ rule).

The problem of segmenting postoperative brain tumor images (compared to
preoperative images, e.g. see [6]) has received little attention so far. In 2002, Moo-
nis et al. [7] proposed a method based on fuzzy-connectedness for segmenting
postoperative MR images. Their approach is semi-automatic and requires the
manual definition of seed points. Kanaly et al. [8] proposed a semi-automatic
method based on thresholding of the difference image between T1-weighted pre-
and postcontrast images. Recently, Kwon et al. [9] developed a preoperative
and post-recurrence brain tumor registration, which included the segmentation
of (postoperative) post-recurrence images using a Bayesian joint registration
and segmentation framework. In contrast, we segment the initial postopera-
tive scan where recurrences are usually absent and circumvent the need for
time-consuming registration procedures via the use of semi-supervised learning.
Semi-supervised learning has been used previously in the context of brain tumor
segmentation. Lee et al. [10] proposed a semi-supervised discriminative random
field. They also employed a patient-specific model for segmenting enhancing tu-
mor. However, they applied their model only on two-dimensional, preoperative
images. Caban et al. [11] proposed a framework of sequential transductive and
inductive learning based on conditional mixture Naive Bayes and Support Vector
Machines. Their framework was designed for annotating edema in multi-modal,
temporal MRI studies of patients with high-grade gliomas.

Our contribution is a fully-automatic method for segmenting the enhancing
tumor in postoperative multimodal MR images. We introduce a patient-specific
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semi-supervised learning approach that is resilient to the presence of hemor-
rhages by combining information from pre- and postoperative images without
the need of registering them.

2 Methods

We approach the problem of segmenting postoperative multimodal MR images
of brain tumor patients from a machine learning-based point of view. Hence, we
consider it as a classification problem in which we seek a hypothesis h that maps a
voxel in an image to its corresponding tissue class label. Voxels are represented
by a feature vector x ∈ Rn. The target tissue class label y ∈ {0, 1} is a bi-
nary variable, representing enhancing tumor (y = 1) and remaining brain tissue
(y = 0) respectively. Furthermore, for every patient we are given a preoperative
multimodal image Ωpre = {ωT1, ωT1c, ωT2, ωFLAIR} and a postoperative image
Ωpost also consisting of T1-weighted, T1-weighted post-contrast, T2-weighted and
FLAIR-weighted MR images. Those four modalities are considered standard in
clinical acquisition protocols. We further rely on a training set S, which will be
used to infer h (=training). A previously unseen voxel i can then be classified
via h(x(i)) : x(i) → y(i) (=testing).

2.1 Features

Before extracting voxel-wise feature vectors, a multimodal image is preprocessed.
This step encompasses noise-reduction, intensity normalization and bias field
correction (corresponds to the pipeline proposed in [12]). The features to be
extracted can be subdivided into appearance- and context-sensitive features.
Appearance-sensitive features are the voxel-wise monomodal intensity values,
voxel-wise intensity difference between pre- and post-contrast T1-weighted im-
ages, first-order statistics (extracted over a 26-voxel neighborhood) and gradi-
ent magnitude textures (local mean and variance) of the respective modalities.
Context-sensitive features are symmetric intensity differences computed between
the contralateral hemispheres. The axis of symmetry has been defined as the mid-
sagittal plane in an atlas. For increasing the robustness of the symmetric features,
we smooth the images with a Gaussian kernel (σ = 3.0) before extracting them.
In the end, we obtain a 45-dimensional feature vector x.

2.2 Patient-Specific Semi-Supervised Learning

For solving our classification problem, we make two assumptions: First, we as-
sume that for every preoperative image Ωpre a corresponding label map can be
generated. Ideally, such a map consists of labels for the healthy tissues (CSF,
GM, WM) and four tumoral subcompartments (enhancing tumor, non-enhancing
tumor, necrosis and edema). Second, we assume that the enhancing tumor and
its residual appear sufficiently similar in the pre- and postoperative images (im-
plying proximity in the feature space).
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Regarding the first assumption, considerable improvement on segmenting
preoperative brain tumor images has been achieved the last two years (see the
MICCAI BRATS challenges 2012 & 2013 [5]). Hence, such a label map can be
automatically created by a segmentation algorithm. We think that the second as-
sumption holds for pre- and postoperative images of the same patient. Those two
assumptions form together with the requirement that the postoperative image
Ωpost to be segmented is available during training the basis of our approach.

In supervised learning, we are given a fully-labeled training set S = {
(
x(i), y(i)

)
:

i = 1, ..., |S|} (|·| representing the cardinality of a set), whereas in a semi-
supervised setting only a subset (S` ⊆ S) of the training data is labeled. This
setting can now be translated to our situation, where we have for every patient j
a fully-labeled preoperative image Ωpre,j and an unlabeled postoperative image
Ωpost,j . The main idea is now to train a model both on the labeled preoperative
image data as well as on the unlabeled postoperative data of the same patient.
This way, information from the pre- and postoperative image can be combined
through a common feature space, omitting an error-prone and time-consuming
registration step. The final aim is that the model estimates for every voxel in the
postoperative image the corresponding tissue class label. Since test data (postop-
erative image) is already available during training the labels can be propagated
from the labeled to unlabeled data, which is also known as transduction. Conse-
quently, our transductive model tries to solve the classification problem directly
for the available data rather than inferring a general rule h.

2.3 Semi-supervised Decision Forest

Decision Forests are an increasingly popular discriminative model mainly used
for solving classification and regression problems. A thorough introduction into
decision forests in the context of computer vision and medical image analysis can
be found in the book of Criminisi et al. [13]. In [13] a semi-supervised variant of
the decision forest model has been proposed, yet only applied to two-dimensional
toy datasets. We adopt this model for solving our problem of postoperative brain
tumor segmentation.

During training of a supervised decision forest, for each decision tree, data
is passed down from the root to the leafs. In doing so, data is split such that
for every internal (=split) node k of the respective decision tree an objective
function is maximized. We consider the information gain IGk defined as

IGk(Sk, θk) = H(Sk)−
∑

i∈{L,R}

∣∣Sik∣∣
|Sk|

H(Sik) (1)

where H(Sk) denotes the entropy, Sik the training data after the split and {L,R}
index the left and right child node respectively.

In every split node k, we choose the parameters θk of a weak learner hk(x, θk)
such that the information gain is maximized, i.e. θ?k = arg maxθk∈Θ IGk(Sk, θk),
where Θ denotes the parameter space. In other words, an optimal split is a
decision boundary which separates the training data such that the resulting
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empirical class distributions of the children show minimal entropy. Optimization
is performed by exhaustive search over a randomly selected subspace of Θ. In this
work, we consider hk to be an axis-aligned hyperplane. For handling unlabeled
training data the information gain defined in equation (1) is extended by an
unsupervised term IGk,u resulting in

IGk(Sk, θk) = IGk,u(Sk, θk) + α · IGk,s(Sk,`, θk) (2)

where IGk,s corresponds to equation (1), Sk,` denotes the labeled subset of the
training data in node k and IGk,u is defined as

IGk,u(Sk, θk) = log(det Σ(Sk))−
∑

i∈{L,R}

∣∣Sik∣∣
|Sk|

log(det Σ(Sik)). (3)

The sets Sk, Sik refer to the complete (labeled and unlabeled) training data before
and after the split and Σ is a n×n covariance matrix, respectively. The coefficient
α controls the influence of the labeled data. Above formulation corresponds to
the one proposed in [13].

A decision forest establishes a partitioning of the feature space. Since we
are considering axis-aligned weak learners, we obtain rectangularly shaped par-
titions. A regular decision forest uses data in such a partition to estimate the
respective leaf statistics. In the particular case of semi-supervised decision forests
we are dealing with unlabeled data as well as labeled data. This has the conse-
quence that some of the data points or even all data points affiliated with a leaf
are unlabeled. However, for estimating leaf statistics all the training data points
need a label. Thus, we have to propagate class labels from the labeled subset
in a meaningful way. As suggested in [13], this can be realized by finding the
closest labeled point in terms of a geodesic distance G. In the present case, G
corresponds to the shortest geodesic path along data points, starting and ending
at an unlabeled and labeled data point respectively. The local distance function
between data points is chosen to be the symmetric Mahalanobis distance [13]
(results from the assumption that the leaf density follows a multivariate Gaus-
sian distribution, cf. equation (3)). Since performing label propagation for each
data point separately is computationally not feasible, the forest model approxi-
mates it by conducting it for the leaf centroids only. Therefore, we compute the
geodesic distance between the means associated with the gaussian partitions.
Leafs are represented as nodes in a graph. The shortest (discrete) geodesic dis-
tance can then be determined by solving the all-pairs shortest path problem for
this particular graph, which can be achieved by the Floyd-Warshall algorithm.
The closest leaf statistics are then propagated to the respective unlabeled leaf.

After propagation of leaf statistics, the posterior probability p(y|xu) for
an unlabeled feature vector corresponds to an average over the whole forest:
p (y|xu) = 1/T

∑T
t=1 pt (y|xu), where pt (y|xu) is computed based on the em-

pirical class-histogram stored in the leaf of tree t containing vector xu. The
assignment of an unlabeled voxel i to its most probable tissue class ỹ(i) is then

performed according to the MAP-rule: ỹ(i) = arg maxy p(y
(i)|x(i)

u ).
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3 Results

For evaluating our method, we relied on image data of 10 high-grade glioma
patients (images resampled to 1 [mm] isotropic resolution, mean preoperative
contrast-enhancing tumor volume in [ml]: 13.7 ± 11.2). This encompasses pre-
and postoperative multimodal images of four modalities (T1, T1c, T2, FLAIR).
For five patients a complete resection of contrast-enhancing tumor has been per-
formed, whereas for the other five patients a residual tumor volume is present.
Before the evaluation, all the images were skullstripped and rigidly registered.
The (pre- and postoperative) ground truth was defined by manual expert seg-
mentation.

For comparison, we chose one of the top-ranked segmentation methods (which
is based on [12]) of the BRATS Challenge [5]. The method, primarily designed
for segmenting preoperative low- and high-grade gliomas, employs a supervised
decision forest classifier followed by a spatial regularization using a Conditional
Random Field. We think that due to the methodological similarity between our
approach and the one chosen for comparison, the influence of semi-supervised
learning may be more apparant. Class imbalance is taken into account via un-
dersampling of the majority class (y = 0). Our method, which we refer to as
SSDF (Semi-Supervised Decision Forest), is trained and evaluated on the labeled
preoperative and unlabeled postoperative image of one patient at a time. The
supervised method, which we simply refer to as DF, is once trained on labeled
preoperative images only (DFPRE ), once trained and evaluated (leave-one-out
cross-validation) on labeled postoperative images (DFPOST ) and finally trained
and evaluated using both labeled pre- and postoperative images (leave-one-out
cross-validation) (DFPREPOST ).

Our method has been implemented using C++ and the Sherwood library
[13]. We fixed the number of trees T to 40 and α to 1.0. The computation time
is mainly defined by the number of leafs, i.e. by the depth D of the forest, and
the size of the image volume. The number of leafs l correspond to the number of
nodes in the all-shortest path problem to be solved for label propagation. Since
the Floyd-Warshall algorithm has a time complexity of O(l3), computation time
increases drastically with D. We found that a depth of D = 8 resulted in a good
trade-off between performance and computation time.

For quantitative evaluation of the segmentation results, we chose to measure
sensitivity, specificity, positive predictive value (PPV) and absolute volume error
in [ml]. We chose not to estimate the Dice coefficient due to the small size of
the residual tumor segments, which results in drastic changes of overlap mea-
sures. Results are depicted in table 1. Sensitivity and PPV can be computed
for the patients with residual tumor volume only. Specificity and absolute vol-
ume error for all 10 patients. We further defined a true positive value of zero
for a particular method and image to be a ‘miss’ and counted the total number
of missed instances (#MISSED) per method. The average computation time of
SSDF (training + testing) is about 3.5 minutes, which is less than the average
testing time for DF of about 5 minutes.
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Method Sensitivity Specificity PPV Abs. volume error [ml] #MISSED

SSDF (0.16, 0.27) (0.99, 0.08) (0.24, 0.93) (0.24, 4.72) 1

DFPRE (0.26, 0.61) (0.96, 0.26) (0.15, 0.93) (2.38, 11.24) 0
DFPOST (0, 0.12) (0.99, 0.01) (0, 0.92) (0.15, 6.49) 3
DFPREPOST (0.19, 0.26) (0.99, 0.06) (0.25, 0.92) (0.48, 5.87) 1

Table 1: Results of quantitative evaluation. Performance measures are described
by the tuple (median, range) due to the small sample size.

4 Discussion and Conclusion

When analyzing the segmentation results qualitatively as well as quantitatively,
we make several observations. First, DFPRE tends to oversegment the residual
enhancing tumor. This is reflected in the high sensitivity, low specificity (com-
pared to other approaches), highest absolute volume error and zero misses. The
oversegmentation is caused by the inability of the model to properly discrimi-
nate between hemorrhage and enhancing tumor. In contrast, DFPOST tends to
undersegment the residual enhancing tumor and completely misses three cases.
The performance of our approach SSDF seems superior to DFPRE which in-
dicates that in other preoperative images lies no relevant information for seg-
menting a particular postoperative image. The results of the combined model
DFPREPOST are comparable to SSDF which suggests that information from
pre- and postoperative images is truly complementary for segmenting postop-
erative images. In favor of SSDF is the smaller error in volume. An exemplary
case supporting our idea of patient-specificity is shown in figure 1. However,
due to the small sample size these observations are of preliminary nature. The
advantage of SSDF over DFPREPOST is that it can discriminate residual en-
hancing tumor from hemorrhages without requiring postoperative ground truth

Fig. 1: Exemplary case, T1c-weighted images (green = enhancing tumor), from
left to right: Preoperative image, Postoperative image (relevant area is magni-
fied), result for SSDF, result for DFPREPOST, ground truth. In this specific
case, part of the choroid plexus (yellow box) has been infiltrated by the tumor
which was correctly detected by our approach.
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data. The generation of ground truth data for postoperative images is subject
to large inter-observer variability [3] and even more time-consuming than for
preoperative images.

We presented a fully-automatic method for segmenting residual enhancing
tumor in postoperative MR images, which is important to assess surgical out-
come and make further treatment decisions. Our approach allows information
from pre- and postoperative images to be integrated without the necessity to reg-
ister them. We think that our initial results provide a basis for further research
of this important yet rarely approached segmentation problem.
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