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H. Lu1, M. Reyes1, A. Šerifović2, S. Weber1, Y. Sakurai3, H. Yamagata3, Ph. C. Cattin4

1Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
2Faculty of Electrical Engineering, University of Tuzla, Bosnia and Herzegovina

3Research & Development Center, TOSHIBA Medical Systems Corporation, Japan
4Medical Image Analysis Center, University of Basel, Switzerland

ABSTRACT

In this paper we propose a variational approach for multi-

modal image registration based on the diffeomorphic demons

algorithm. Diffeomorphic demons has proven to be a ro-

bust and efficient way for intensity-based image registration.

However, the main drawback is that it cannot deal with mul-

tiple modalities. We propose to replace the standard demons

similarity metric (image intensity differences) by point-wise

mutual information (PMI) in the energy function. By com-

paring the accuracy between our PMI based diffeomorphic

demons and the B-Spline based free-form deformation ap-

proach (FFD) on simulated deformations, we show the pro-

posed algorithm performs significantly better.

Index Terms— Image Registration, Diffeomorphisms,

Mutual Information

1. INTRODUCTION

Medical imaging techniques have become indispensable to

examine the human anatomy from anatomical and functional

viewpoints. Since different imaging principles are able to

generate different information, we often need to fuse these

images to have the necessary information in one single image.

Therefore, accurate multi-modal registration methods play a

crucial role in many clinical applications.

Many non-rigid registration methods have been proposed

in the past years, among which diffeomorphic demons [1] has

proven to be a robust and reliable method [2]. The main idea

of the algorithm is based on the classic Demons introduced by

Thirion [3], which computes the pixel velocity from the image

intensity difference. Instead of performing the optimization

procedure on the displacement field space as in the classic

demons, diffeomorphic demons combines a recently devel-

oped Lie group framework on diffeomorphisms and optimizes

for Lie groups. Thus, this method ensures a smoother in-

vertible transformation. Nevertheless, diffeomorphic demons

cannot handle multi-modal registrations due to the similarity

metric it uses. Therefore, it is quite essential to have a metric

which can deal with multi-modal images. Information the-

ory based similarity metrics such as mutual information (MI)

are widely used to deal with images with different imaging

technologies. Such measures rely on global statistics and are

difficult to use in variational registration approaches. Rogelj

et al. [4], however, proposed a point similarity measure de-

rived from global mutual information. This measure allows

estimation of mutual information on individual image points.

In this paper we present a modification of the diffeomor-

phic demons algorithm to allow for multi-modal image regis-

tration. The energy function of the registration framework is

replaced by a measurement of global mutual information that

is maximized during the optimization procedure. In Section 2

the diffeomorphic demons algorithm for mono-modal image

registration is described, followed by Section 3 describing its

extension to multi-modal image registration. In Section 4, the

proposed algorithm is compared against FFD using simulated

deformations on several sets of T1 and T2 brain magnetic res-

onance (MR) images.

2. DIFFEOMORPHIC DEMONS MODEL

2.1. Demons Registration

The classic demons algorithm is based on a heuristic argu-

ment called ”demons” that create forces according to local

characteristics of the images in a similar way Maxwell did for

solving the Gibbs paradox. The forces are inspired by the op-

tical flow equations and the method alternates between com-

putation of the forces and regularization by Gaussian smooth-

ing. The registration framework is treated as an optimiza-

tion problem that aims at finding the displacement of each

pixel so as to get a reasonable alignment of the images. This

results in a computationally efficient algorithm compared to

other non-rigid registration procedures such as those based on

linear elasticity.

The whole registration algorithm can be summarized by

a model with an energy consisting of a similarity function, a

transformation error function and a regularization term.
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Given a fixed image F , a moving image M , and a trans-

formation field s, the energy function with respect to the up-

date field u can be described as follows:

Ecorr
s (u) = ‖F −M ◦ (s+ u)‖2 + σ2

i

σ2
x

‖u‖2 , (1)

where σ2
i and σ2

x accounts for noise on the image intensity and

the spatial uncertainty on the correspondences respectively.

Using a first-order Taylor expansion, Equation (1) can be

linearized as:

Ecorr
s (u) = ‖F −M ◦ s+ Ju‖2 + σ2

i

σ2
x

‖u‖2 , (2)

with J = −(∇F +∇(M ◦s))/2 for an efficient second-order

minimization (ESM) symmetric registration.

The energy function reaches minimum when its gradient

is zero, thus we can get the update field as:

u = −F −M ◦ s
J2 +

σ2
i

σ2
x

J. (3)

Gaussian smoothing is used as the regularization term for the

displacement u. The registration must solved iteratively as

the update field is based on local information.

2.2. Diffeomorphic Extension

One of the major drawbacks of the classic demons algorithm

is its inability to generate an invertible output transform when

compared to diffeomorphic image registration algorithms.

Vercauteran et al. [1] proposed a diffeomorphic extension

to the demons framework. The main idea was to adapt the

optimization procedure to a space of diffeomorphic transfor-

mations. Given the current transformation s, the update is

done through the exponential map on the Lie group with an

update step u:

s = s ◦ exp(u). (4)

The final iterative registration algorithm can be written as fol-

lows:

• Given the current transformation s, compute a corre-

spondence update field u by minimizing Ecorr(u) with

respect to u.

• For a fluid-like regularization let u← Kfluid ∗ u. The

convolution kernel will typically be a Gaussian kernel.

• Let c← s ◦ exp(u).

• For a diffusion-like regularization let s ← Kdiff ∗ c
(else let s ← c). The convolution kernel will also typi-

cally be a Gaussian kernel.

3. MULTI-MODAL DIFFEOMORPHIC DEMONS

3.1. Point-wise Mutual Information

Mutual information is an information theoretic entity that

measures how much information is gained about one random

variable by the knowledge of another random variable. It is

defined by marginal and joint entropies:

MI = H(A) +H(B) +H(A,B), (5)

and can be computed as:

MI =
∑
iF ,iM

p(iF , iM ) log

(
p(iF , iM )

p(iF )p(iM )

)
, (6)

where iF and iM are image intensities of image F and M .

As can be seen from Equation (5) mutual information is a

global metric, giving only one similarity value for the whole

image area. Rogelj et al. [4] introduced the idea of a point

similarity measure so that the global mutual information can

be computed locally. In other words, every pixel in the im-

age has its own contribution to the global mutual information.

Thus, the equation can be rewritten in the following form:

MI =
1

N

∑
x

SMI(x)

SMI(x) = log

(
p(iF (x), iM (x))

p(iF (x))p(iM (x))

)
,

(7)

where x denotes the pixel in the image, and N is the number

of pixels in the overlapping area.

3.2. Integration into Diffeomorphic Demons

To realize multi-modal registration within diffeomorphic

demons framework, we modify the external forces by replac-

ing the mean squared error term defined in Equation (1) with

point-wise mutual information. The energy function will then

become:

Es(u) = log

(
p(iF , iM◦(s◦exp(u)))
p(iF )p(iM◦(s◦exp(u)))

)
. (8)

Since a larger mutual information value indicates bet-

ter alignment, maximization of the energy function is re-

quired instead of minimization as in the classic diffeomorphic

demons.

Assuming that E is maximum when ∇E((u)) = 0, one

could simply use the gradient of the point-wise mutual infor-

mation as the external force. Taking account of the consis-

tency of the registration [5], using forward and reverse forces

[6] makes the optimization more accurate and robust.

The forward force estimation Ff is defined as the gradi-

ent of point-wise mutual information with respect to the fixed
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image. It moves the points in the fixed image to better match

the moving image:

Ff (x) =
∂

∂ε

∣∣∣
ε=0

SMI(iF (x+ ε), iM◦s(x)), (9)

while the reverse force Fr, which tends to align the points in

the moving image with respect to the fixed image, is defined

as:

Fr(x) =
∂

∂ε

∣∣∣
ε=0

SMI(iF (x), iM◦s(x+ ε)), (10)

The update field can finally be defined as:

u = kE(Ff − Fr), (11)

where the coefficient kE indicates the update step length

which controls the optimization speed.

To accelerate the registration speed and avoid local min-

ima, a multi-resolution approach with multiple levels is

adopted in our work. Within a predefined number of iter-

ations, the registration starts at the coarsest resolution level

having the least amount of image detail, and continues with

higher resolutions using the previously obtained transforma-

tion as an initialization.

4. EXPERIMENTS AND RESULTS

To quantitatively evaluate the accuracy of the proposed point-

wise mutual information based diffeomorphic demons algo-

rithm, we compared it to the free-form deformation (FFD)

registration method, Rueckert et al. [7], on artificially dis-

torted images.

To statistically analyze the benefit of the proposed method,

we used the software package R (www.r-project.org). Nor-

mality of the distributions was tested with the Kolmogorof-

Smirnov test. A p-value < 0.05 was considered statistically

significant for all tests.

Since a purely qualitative analysis is insufficient to vali-

date multi-modal non-rigid registration methods, our experi-

ments base on recovering a synthetic deformation field. The

synthetic deformation model we adopted consists of a reg-

ular grid with a random shift of each node, interpolated by

thin plate spline [2]. There are two parameters that may be

varied, the grid size and the possible extent of the random de-

formation that is applied on each grid point. As the choice

of synthetic deformation parameters can bias the quantitative

evaluation, we adopted different degrees of synthetic defor-

mations.

To test our multi-modal registration algorithm we need

a set of perfectly aligned ground truth images from multi-

ple modalities. For this reason we used images from the

BrainWeb MRI Simulated Normal Brain Database [8]. This

database can provide T1 and T2 images with different noise

and bias configuration. In the experiment we used MRI T1

and T2 images with an isotropic voxel size of 1× 1× 1mm3.

Fig. 1: (a) Synthetically deformed T2 image with a maximum

deviation of 4mm, 6mm and 8mm respectively, (b) differ-

ence of the ground truth T2 image and FFD registration, (c)

difference of the ground truth T2 image and registration with

our multi-modal diffeomorphic demons

For all our experiments three levels of resolution are

adopted consisting of 20 iterations each. We use a Gaussian

kernel with a sigma σ = 3 for the update field regularization

and sigma σ = 2 for deformation field Gaussian regular-

ization. The coefficient kE is set to 4 at the beginning of

optimization and is decreased proportionally during the iter-

ations in order to facilitate convergence. The quality of the

registration is evaluated by the following criteria:

• Root-Mean-Square of Displacement Field (RMS):

eRMS =

√
1

NΩ

∑
x∈Ω

(ϕsyn(x)− ϕreg(x))2, (12)

where NΩ denotes the number of voxels in the overlap-

ping domain, ϕsyn and ϕreg are the synthetic ground

truth and the computed deformation field.

• Maximum Distance Error (MDE):

Maximal difference of all the components of the two

displacement fields ϕsyn and ϕreg .

• Global Mutual Information (MI):

Computed with Equation (6).

We generated three sets of distorted T2 images. Each dataset

consists of 20 randomly synthesized deformations. All the
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Fig. 2: Comparison of the results between PMI diffeomor-

phic demons and FFD. Each column represents different dis-

tortion levels at 4mm, 6mm and 8mm, in which the left item

indicates FFD and the right item indicates PMI diffeomorphic

demons. (a) Boxplot of RMS (b) Boxplot of MDE (c) Boxplot

of MI

deformations are generated based on a grid size of 32 × 32
and with maximum deviations of 4mm, 6mm and 8mm.

The results of the registration are plotted in Fig. 2. We

can see that our proposed multi-modal demons outperforms

the FFD in all distortion levels. The displacement field is

significantly closer (p < 0.05) to the ground truth than for

FFD. Similarly, the achieved MI value for the registered im-

ages is significantly higher (p < 0.05) and the MDE was also

significantly lower for our approach than for FFD. However,

both algorithms are sensitive to the degree of distortion as the

registration results for both approaches get worse with higher

synthetic deformations.

5. CONCLUSION

This paper describes an extension to the diffeomorphic

demons registration method by integrating point-wise mu-

tual information allowing to use the sound mathematical

demon framework also for multi-modal registrations. We

evaluated our proposed method using simulated BrainWeb

images with synthetic deformations of different degree. The

registration results that we obtained are compared with the

state-of-the-art B-Spline based FFD approach. We show that

the proposed method consistently outperforms FFD.

Our future work will focus on the exploration of new en-

ergy terms and different regularization approaches to make

the method applicable to a wider range of applications. Ef-

forts will also be made to make the implementation available

to the community.
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