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Abstract— Facial nerve segmentation plays an important role
in surgical planning of cochlear implantation. Clinically avail-
able CBCT images are used for surgical planning. However, its
relatively low resolution renders the identification of the facial
nerve difficult. In this work, we present a supervised learning
approach to enhance facial nerve image information from
CBCT. A supervised learning approach based on multi-output
random forest was employed to learn the mapping between
CBCT and micro-CT images. Evaluation was performed quali-
tatively and quantitatively by using the predicted image as input
for a previously published dedicated facial nerve segmentation,
and cochlear implantation surgical planning software, OtoPlan.
Results show the potential of the proposed approach to improve
facial nerve image quality as imaged by CBCT and to leverage
its segmentation using OtoPlan.

I. INTRODUCTION

Cochlear implantation is a conventional treatment for
patients suffering from profound hearing loss. The surgical
operation for cochlear implant requires mastoidectomy, to
access the cochlea and avoid critical anatomical structures.
To minimize the invasiveness of the surgical operation,
a surgical robot system with an associated planning tool,
OtoPlan [1], has been developed. OtoPlan assists the robotic
system to perform drilling for direct cochlear access [2]. One
of the main challenges of this procedure is to avoid the facial
nerve with a margin of at least 0.5mm. Any damage of the
facial nerve causes temporary or permanent paralysis in the
ipsilateral face. Hence, an accurate facial nerve segmentation
is a critical step for an effective surgical plan.

The surgical planning is performed on cone-beam com-
puted tomography (CBCT) images. In clinical practice,
CBCT images are acquired with reduced radiation dose to
patients, which may result in low image quality and less clear
structure border. The diameter of the facial nerve lies in the
range of 0.8 — 1.7mm [3]. Accurate segmentation of the facial
nerve from the acquired CBCT images is challenging, mainly
in the border region. Image enhancement is hypothesized to
enhance the overall image quality and thereby to improve
facial nerve segmentation.

In recent years, several CBCT image enhancement algo-
rithms based on deterministic models have been proposed
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[4], [5], [6]. However, they were built from a priori knowl-
edge of the imaged anatomy or imaging process. Alterna-
tively, supervised learning has been proposed to learn the
relationship between the acquired low-resolution and corre-
sponding high-resolution image [7]. In this work, we propose
to apply supervised learning based on multi-output random
regression forest to enhance the image quality, in order to
obtain a faster and more reliable facial nerve segmentation
in the framework of pre-operative cochlear planning.

Below, the proposed approach is described and a detailed
description of the image enhancement process for facial
nerve segmentation is presented. An initial evaluation of the
approach performed on CBCT images of cadaveric specimen
and segmentation results, as compared to ground truth micro-
CT images, is presented.

II. METHODS

In supervised learning, image features = (xy,....x,;) € R”
computed on clinical CBCT are mapped to the corresponding
output response y = (y1,....ym) € R” computed on micro-
CT. The mapping is cast as a regression problem. Given a
training set {(X;,Y;)|[i=1,...,N} of CBCT and micro-CT
aligned pairs of images, we extract from each i,; image,
a feature vector X; = (z1,....z¢) € X and responses Y; =
(y1,..-yc) € Y over a grid of C voxels. Then, a function § :
X'+ Y from a space of features X to the space of responses
Y that predicts the response for any new test image feature
Xiest € X is constructed.

The complete pipeline is presented in Fig. 1, and is
described below.

A. Feature Extraction

1) Input Features: For feature extraction, the CBCT im-
age was rigidly registered and resampled to the micro-CT
image, in order to capture the image mapping from low-
to high- resolution at the same spatial locations. A uniform
sampling grid with isotropic grid spacing of 0.054mm> was
defined over the CBCT and micro-CT images. At each node
cj of the grid j = {I,..C}, a volume of interest (VOI)
5 x5 x5 was extracted on which feature descriptors were
computed.

We propose to use two family of features, intensity- and
texture-based. The intensity-based features includes all the
intensity values. The texture-based features includes first
order statistical measures and the gray-level co-occurrence
matrix (GLCM) [8], [9]. The list of texture features is
presented in Table I. For texture-based features, a feature



pooling was performed, followed by principal component
analysis (PCA) to reduce dimensionality and redundancy of
feature sets. This reduces the feature space from R4 to R34,
Hence, the input feature set v = (vy,....v,) includes all the
image intensities, first order statistics and mean and variance
of all the pooled GLCM features (i.e. n € {R'> +R3* =
R159} )

TABLE I
LIST OF TEXTURE - BASED FEATURES COMPUTED AT EACH GRID NODE.

Texture Features
Ist Order Statistics GLCM
Mean Energy
Std.Dev Entropy
Skewness Correlation
Kurtosis Inertia
Minimum Cluster Shade
Maximum Cluster Prominance
Inverse Difference Moment
Haralick Correlation

2) Output Response: A VOI of 3 x 3 x 3 was extracted at
each corresponding grid node ¢; from micro-CT. The output
response set Yy = (y1,....ym) € RR?7 includes all the intensity
values.

B. Multi-Output Regression Model

Decision forests are a group of learning methods widely
used for classification and regression tasks in machine learn-
ing and computer vision. An extension of decision forest
with extra trees algorithm has been proposed to handle
multi-ouput image classification [10], [11]. We adopted this
technique as a regression approach for its ability to preserve
local intensity patterns. During supervised learning, the al-
gorithm randomly selects without replacement K input vari-
ables {vi,....v;} from the training data D := {(X;,Y;)|i =
1,...,N}. For each selected input variable, within the interval
[vimin yimax] 3 cutpoint s; was randomly defined, followed by
splitting [v; < s;]. Among the K candidate splits, the best split
was chosen via optimizing the L2 mean square error [11].

During testing, image features were extracted and passed
through the regression random forest. The computed output
corresponds to the intensity of the central voxel of the
designed 3x3x3 voxels window. No further post-processing
was performed on the resulting image.

III. RESULTS

We report in this study preliminary results obtained on
a database of right and left ears from 4 cadaver heads
following an approved clinical study. Pairs of CBCT (0.15 x
0.15x 0.15mm*) and micro-CT ( 0.018 x 0.018 x 0.018mm?)
images were acquired from the four heads. The images were
rigidly aligned using a rigid registration transform, normal-
ized cross-correlation and gradient descent optimization. For
rigid registration, we defined CBCT as the moving image
and micro-CT as the fixed one. Then we resampled CBCT
with the micro-CT voxel spacing. From the resulting rigidly

aligned images, image patches were extracted and used for
the training phase.

For evaluation, we manually segmented the facial nerve
from the micro-CT image (referred hereafter as ground-
truth). We used the software OtoPlan [1] to perform segmen-
tation of the facial nerve from the original CBCT image and
its corresponding enhanced version. OtoPlan is a dedicated
state-of-the-art software for cochlear implantation surgical
planning.

We performed qualitative visual assessment of the re-
sulting segmented facial nerve as well as a quantitative
analysis of surface-to-surface distances to the ground-truth
segmentation. For implementation, we use the scikit-learn
package [12] and its ExtraTreesRegressor, which implements
a multi output random forest regression algorithm. For model
parameterization (i.e. number of estimators, number of trees,
etc.) we adopted a leave-one-out strategy. Additionally, we
investigated the influence of the window size on the predic-
tion accuracy.

Figure 2 shows the results obtained after regression forest
application to a CBCT image. Compared to the input CBCT
image, the resulting enhanced image is much sharper and
able to characterize image details not completely discernible
from the CBCT image.

Following the recent findings from [7], we further explored
the importance of the window size used to extract feature
information during the training phase, Our results showed
that using short range features (i.e. window size in our ap-
plication smaller than 0.018mm) yields suboptimal prediction
results. Conversely, employing an excessively large window
size yields smoother but inaccurate prediction results. This
result reflects the ability of the prediction model to learn
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Fig. 1. The complete pipeline of the proposed approach for enhancing
CBCT image



(a) original CBCT (b) enhanced CBCT

(c) original micro-CT

(d) “short range” prediction

Fig. 2. Results of supervised-learning based CBCT image enhancement.
Image features are extracted from (a) original CBCT image, and used to
produce an enhanced version (b), that presents sharper and more clear
structures, as compared to the original high-resolution micro-CT image
(c). For demonstration purposes, we report results obtained using features
extracted from a short range (i.e. small window size) (d), indicating the
ability of the model to learn and utilize local structural information for the
prediction process.

local structural information that leverages the prediction of
the image content at lower resolution scales.

In the next section, we present preliminary results of seg-
mentation of the facial nerve in the framework of minimally
invasive cochlear implantation surgical planning, using the
enhanced CBCT as input for the dedicated software tool
OtoPlan.

A. Facial Nerve Segmentation

OtoPlan features a semi-automatic segmentation of the
facial nerve. Based on a GUlI-based tool, the user selects
landmarks that approximately lie on the facial nerve’s mid-
line. A panoramic visualization is then constructed and
displayed to the user, which corresponds to an “unfolding” of
the facial nerve into one single view. The selected landmarks
are displayed and used to cast intensity sampling lines that
are perpendicular to the approximate midline of the facial
nerve. A threshold based scheme is then used by OtoPlan
to find the facial nerve wall as initialization prior to manual
adjustments. Figure 3 illustrates this part of the segmentation
process.

As the image contrast from CBCT is relatively poor,
this process can be daunting and prone to errors, which
in turn necessitates manual corrections. We performed a
preliminary evaluation by comparing segmentation results
obtained using the original and the enhanced CBCT image.
OtoPlan can then generate and export a mesh representation
of the segmented facial nerve. We measured surface-to-
surface distances between each generated mesh and the
corresponding ground-truth generated mesh. Figure 4 shows
a particular example result where distances are color-coded
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Fig. 3. Panoramic view for semi-automatic segmentation of the facial
nerve. The user selects a set of landmarks that approximately correspond
to the middle line of the facial nerve. A threshold based scheme is then
used to cast sampling perpendicular in order to find the facial nerve wall
(above and below the middle line). Due to the low contrast quality of the
CBCT image, manual correction of each point is commonly required. In
this example, we illustrate the enhanced CBCT image.

(a) Original CBCT

(b) Enhanced CT

Fig. 4.  Surface-to-surface distances from the ground-truth segmentation
to OtoPlan segmentations generated using the original and enhanced CBCT
image. Colormap encodes distances and best viewed in electronic version.

to visualize deviations from the ground-truth segmentation.
Employing the enhanced CBCT image provides OtoPlan
with a sharper and better delineated facial nerve wall that
yields a more precise segmentation of the facial nerve (i.e.
lower surface-to-surface distances with respect to the ground-
truth).

IV. CONCLUSIONS

Good characterization of the facial nerve is of crucial
importance for a safe planning of cochlear implantation in-
terventions. Although CBCT-based imaging provides means
to image the facial nerve in patients, its relatively low image
contrast hinders a precisely definition of the facial nerve wall.
In this work we proposed a machine-learning based approach
that uses a supervised learning paradigm to learn the mapping
between low-, and high-resolution imaging of the facial
nerve. The approach relies on a multi-output regression forest
and image features, extracted from the clinically available
CBCT image, to perform voxel intensity prediction at the
micro-CT image resolution level. Preliminary results on



CBCT images of the facial nerve show the ability of the
proposed approach to enhance the imaging information by
performing a prediction of voxel intensity information at the
equivalent micro-CT resolution level. These first results also
show the potential of the proposed approach to assist state-of-
the-art cochlear surgical planing software, such as OtoPlan,
to segment the facial nerve more precisely.

We report similar findings aligning with the literature on
supervised-learning based image quality transfer [7], where
local structural information from the low-resolution image
was shown to convey information that can be used to predict
localised voxel intensity information at the high-resolution
image level. Our experiments also suggest the advantage of
using a multi-output regression forest, in contrast to a single-
output regression forest, in order to promote the learned local
structural information.

The proposed approach presents some limitations. As for
other supervised-learning based approaches, it is important to
have a database of samples that characterises the expected
variability of a population. Secondly, the mapping learned
between low-, and high-resolution is specific to the imaging
parameters used for the training database, and therefore a
new model is potentially needed in case these parameters
are modified. This can be circumvented, for instance, by
designing imaging features that are independent of the energy
parameters used for CT devices, or by designing compensa-
tion strategies based on an imaging phantom.

Further comprehensive evaluations and comparisons are
needed, especially against other previously proposed super
resolution approaches, as well as a more comprehensive
quantitative evaluation on a larger dataset. Other future work
will include an attempt to combine this approach with a fully
automatic segmentation of the facial nerve that uses shape
priors, as proposed by others [13], but that does not employ
computationally expensive non-rigid registration techniques.
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