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Abstract— In this paper we present a novel hybrid approach
for multimodal medical image registration based on diffeomor-
phic demons. Diffeomorphic demons have proven to be a robust
and efficient way for intensity-based image registration. A very
recent extension even allows to use mutual information (MI) as a
similarity measure to registration multimodal images. However,
due to the intensity correspondence uncertainty existing in
some anatomical parts, it is difficult for a purely intensity-
based algorithm to solve the registration problem. Therefore,
we propose to combine the resulting transformations from both
intensity-based and landmark-based methods for multimodal
non-rigid registration based on diffeomorphic demons. Several
experiments on different types of MR images were conducted,
for which we show that a better anatomical correspondence
between the images can be obtained using the hybrid approach
than using either intensity information or landmarks alone.

I. INTRODUCTION

Magnetic resonance imaging (MRI) has become one of
the most indispensable techniques to examine the human
anatomy from anatomical and functional viewpoints. Since
different imaging sequences are able to generate different
information, we often need to fuse these images to have the
necessary information in one single coordinate frame. For ex-
ample, it is often required to register functional MRI images
with T1/T2 images to remove the spatial distortion artifacts.
Therefore, accurate multimodal registration methods play a
crucial role in many clinical applications.

Among the wide variational image registration algorithms,
two categories can be classified according to the used im-
age information: intensity-based and landmark-based. The
landmark-based methods define a unique smooth transfor-
mation from a source image to a target image based on
corresponding landmarks. The correspondence of the points
away from the landmarks is defined by a certain interpolation
method, e.g. thin-plate spline (TPS) model [1], anisotropic
landmark interaction [2], etc. More details can be referred to
[3]. The main advantages of landmark-based approaches are
the computational efficiency and the capacity of handling
large geometrical deformations. Nevertheless, it does not
guarantee the accuracy in terms of voxel to voxel corre-
spondence, and the result can be significantly affected by
the choice of the landmarks. Moreover, a pure landmark-
based approach requires to select a considerably number of
landmarks for 3D images, which is a tedious and error prone
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task. With intensity-based methods, the transformation is
directly computed from the intensity information. Diffeomor-
phic demons [4][5] have proven to be a robust and efficient
intensity-based method for monomodal image registration
that uses the sum of squared intensity differences (SSD) as
the similarity metric. As has been recently shown, it can be
extended to cope with multimodal registration problem by
adopting point-wise mutual information (PMI) [6]. However,
with images of low resolution and quality, the intensity
mapping for computing the PMI is not always reliable,
especially in certain areas where intensity distribution is
inhomogeneous (e.g. signal loss in echo planar imaging).
This leads to inaccuracies in the final result.

In the last couple of years lots of research has been put into
hybrid registration approaches which use both intensity and
landmark information [7], [8], [9], [10], [11]. Most of these
approaches use the spline deformation model to calculate
the dense vector field . Besides, such parametric spline-based
methods usually apply global optimization procedures which
are computationally expensive.

In this work, we propose a novel hybrid approach based
on diffeomorphic demons for multimodal MR image regis-
tration. The energy function is made up of point-wise mutual
information, landmark information and a regularization term.
The optimization of this energy results in a combination
of a dense vector field and Gaussian basis functions for
landmarks. In Section 2 the diffeomorphic demons algorithm
using PMI for multimodal image registration is described.
Then we show our hybrid scheme incorporating both land-
marks and intensity information in Section 3. Experimental
results on simulated brain T1/T2 images, functional MR
images and brain tumor resection images are presented in
Section 4.

II. MULTIMODAL DIFFEOMORPHIC DEMONS

The classic demons algorithm is based on a heuristic
argument called ”demons” that create forces according to
local characteristics of the images in a similar way Maxwell
did for solving the Gibbs paradox. The forces are inspired
by the optical flow equations [4] and the method alternates
between computation of the forces and regularization by
Gaussian smoothing. The registration framework is treated
as an optimization problem that aims at finding the displace-
ment of each pixel so as to get a reasonable alignment of the
images. This results in a computationally efficient algorithm
compared to other non-rigid registration procedures such as
those based on linear elasticity. To ensure the invertibility
of the transformation, Vercauteren et al. [5] proposed a



diffeomorphic extension to the demons framework. The main
idea was to adapt the optimization procedure to a space of
diffeomorphic transformations. It is done by using an intrin-
sic update step which computes the vector field exponentials
on the Lie group of diffeomorphisms.

The whole registration algorithm can be summarized by
a model with an energy consisting of a similarity function,
a transformation error function and a regularization term.
Given the fixed image F , a moving image M , and a
deformation field s, the energy function can be described
as follows:

E(c, s) = Sim(F,M ◦ c) + σ ‖s− c‖2 + σλReg(s), (1)

where Sim is the intensity similarity metric which will be
described below, Reg is the regularization term which is
typically a Gaussian kernel, c is the estimated transformation
according to the metric. This energy function allows the
whole optimization procedure to be decoupled into two
simple steps. The first step solves for the correspondences
by optimizing Sim(F,M ◦ c) + σ ‖s− c‖2, with respect to
c and with s being given. The second step solves for the
regularization by optimizing σ ‖s− c‖2 + σλReg(s), with
respect to s and with c being given.

In order to cope with images from different MR imaging
techniques, one cannot simply use the intensity differences
as similarity metric. Therefore, we replace the SSD in the
classical demons with PMI which is able to cope with
multimodal registrations. PMI calculates the contribution of
the global MI from each voxel and is easy to plug in a dense
field approach. The Sim term with respect to the update field
at each iteration can be written in the following form:

E(u) = − log

(
p(iF , iM◦(s◦exp(u)))

p(iF )p(iM◦(s◦exp(u)))

)
. (2)

Nevertheless, in some fast MRI acquisition techniques,
such as echo planar imaging technique (EPI), the intensity
distribution is less homogeneous and much noisier, this
usually gives false intensity mappings that makes the PMI
estimation difficult. Besides, the optimization that we employ
in our method searches greedily for the maximal MI value
which does not necessarily lead to a better transformation
[12]. Hence, some estimated vector fields calculated could
point to a wrong position but with higher MI value. Thus, we
apply a relatively strong regularization to smooth the vector
fields at the cost of restraining large deformations. This can
make the registration harder for difficult registration prob-
lems. Therefore, some prior anatomical information seems
to be helpful to solve this kind of problem.

III. HYBRID REGISTRATION FRAMEWORK

In contrast to the segmentations used in [7], we choose
to use a small number of point landmarks to minimize
manual interaction. The point landmarks would generally be
selected in the regions where the intensity-based approach
could easily fail.

By incorporating the landmarks, we can reformulate the
demons energy function as in [7]:

E(c, s) =Sim(F,M ◦ c) + σ ‖s− c‖2

+ σγ ‖s− l‖2 + σλReg(s),
(3)

where l is the estimated transformation according to the
landmark. Given n corresponding landmarks pi and qi,
i = 1, . . . , n that have been localized in F and M . The
energy term respect to the landmarks can be written as:

σγ ‖s− l‖2 =

n∑
i=1

(qi − pi ◦ s)2. (4)

The optimization of this modified energy function with
respect to c, l , s leads to the following steps:

1) Find the correspondence c of the dense field by min-
imizing Sim(F,M ◦ c) + σ ‖s− c‖2 with respect to
c.

2) Minimizing σγ ‖s− l‖2 with respect to l. This is easily
done by guiding the moving landmarks towards the
reference landmarks.

3) Find the estimated transformation s by minimizing
σ ‖s− c‖2 + σγ ‖s− l‖2 + σλReg(s) with respect to
s. s turns out to be a combination of convolution and
splines:

s(x) = αG ∗ c(x) +
n∑

i=1

αiG(x− pi), (5)

where G is the Gaussian kernel, α is a scalar value
and αi is a vector of weighting parameters.

One practical consideration of minimization on both c
and l is that it may lead to difficulties and instability
in converging towards a solution compared to the single
energy formulation, because c and l could be pulling a
same voxel in different directions. However, since we use
a small number of landmarks, l can be minimized separately
from the known information. With the guidance of the force
from l, the transformation c could easily escape the local
minima. In addition, this computation is straightforward, and
is able to incorporate any registration algorithm in this hybrid
framework with no modification to its implementation.

The final iterative hybrid registration algorithm can thus
be written as follows:

• Given the current transformation s, compute a corre-
spondence update field u by minimizing Ecorr(u) with
respect to u.

• For a fluid-like regularization let u← Kfluid ∗ u. The
convolution kernel will typically be a Gaussian kernel.

• Compute update field v for landmark correspondence.
• Let c← s ◦ exp(u+ v).
• For a diffusion-like regularization let s ← Kdiff ∗ c

(else let s ← c). The convolution kernel will also
typically be a Gaussian kernel.



IV. EXPERIMENTS AND RESULTS

A. Registration on Simulated Data

We first applied our method on artificially distorted images
to evaluate the accuracy and robustness of the proposed
hybrid approach.

Since a purely qualitative analysis is insufficient to validate
multimodal non-rigid registration methods, our experiments
base on recovering a synthetic deformation field. The syn-
thetic deformation model we adopted consists of a regular
grid with a random deformation at each node, interpolated
by a thin plate spline [13].

To test our multimodal registration algorithm we need a
set of perfectly aligned ground truth images from multiple
modalities. For this reason we adopted the images from
BrainWeb MRI Simulated Normal Brain Database [14]. This
database can provide T1 and T2 images (181 × 217 ×
181 voxels) with different noise and bias configuration.
We generated five distorted T2 images with synthesized
deformations. All the deformations are generated based on
a grid size of 32 × 32 × 32 and with maximum devia-
tions of 8 mm. During the experiment, typically around
20 pairs of landmark were picked manually. We evaluated
the registration result using root mean square (RMS) of
the displacement field which can be computed as eRMS =√

1
NΩ

∑
x∈Ω (ϕsyn(x)− ϕreg(x))2, where NΩ denotes the

number of voxels in the overlapping domain, ϕsyn and ϕreg

are the synthetic ground truth and the computed deformation
field.

Table I shows the comparison of RMS between intensity-
based approach and hybrid approach. One can see that
globally the hybrid approach does not improve the result
in terms of RMS. This is due to the fact that the radial
Gaussian basis function utilized for the landmarks in the
hybrid approach does not comply well with the synthetic
deformation field generated by TPS. However, by observing
certain anatomically important regions, we found that hybrid
approach can recover some difficult distortions while the
intensity-based approach fails (see Fig. 1).

TABLE I
RMS OF RESULTS ON SIMULATED MRI BRAIN IMAGES (MM)

Data 1 2 3 4 5
Intensity 2.05 2.08 1.83 1.94 2.01
Hybrid 2.23 2.01 1.82 1.88 1.98

Fig. 1. Registration results overlaid on the occipital lobe of the simulated
brain data. (a) hybrid approach. (b) intensity-based approach.

Fig. 2. Results on brain tumor resection data 1. Red crosses represent the
picked landmarks in (a) T1 image, and (b) T2 image with tumor removed.
Green lines in (c) and (d) indicate the result of intensity-based approach
and hybrid approach.

B. Registration of Brain Tumor Resection Data

We also evaluated our proposed method using five real
data sets from the National Center for Image Guided Ther-
apy (NCIGT) in USA. The datasets (256 × 256 × 20) are
functional MRI scans in T1 and T2 used for neurosurgery
[15], shown in Fig. 2 (a) and (b). Depending on different
levels of deformations, five to ten pairs of landmark were
chosen for each data typically around the tumor resection
area during the experiment.

Due to the lack of ground truth in real clinical data, we first
performed a qualitative analysis by comparing the overlay of
the extracted contour of the brain and the ventricle before
and after the registration, shown in Fig. 2 (c) and (d). It can
be seen that the contour extracted from our hybrid approach
better overlays the edge of the target brain than the one from
the intensity-based method, especially in the area where the
tumor is removed. In order to allow quantitative analysis,
we calculated the Hausdorff distance between the extracted
contours. Hausdorff distance can be computed as:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (6)

where sup represents the supremum and inf the infimum.
The comparison between the intensity-based approach and
the hybrid approach is shown in Table II. We can see that in
all cases the hybrid approach outperforms the intensity-based
approach and improves the registration accuracy.



TABLE II
HAUSDORFF DISTANCE ON BRAIN TUMOR RESECTION DATA (MM)

Data 1 2 3 4 5
Unreg 13.01 12.59 11.67 14.98 12.39
Intensity 7.61 9.78 8.08 12.01 9.41
Hybrid 5.83 6.32 5.36 5.88 6.53

Fig. 3. Results on fMRI data 1. Red crosses represent the picked landmarks
in (a) T2 anatomical image, and (b) fMRI image. Green lines in (c) and (d)
indicate the result of intensity-based approach and hybrid approach.

C. Registration of fMRI Data

We also applied our approach to register fMRI images
(256 × 256 × 23 voxels) to anatomical T1/T2 datasets in
order to remove the EPI related spatial distortions. Five to
ten landmark pairs were placed in the ventricle and the
front lobe regions where EPI artifact are obvious. Figure
3 shows that the geometrical distortion in the frontal lobe
in case 1 is better corrected with the hybrid approach than
with intensity-based approach. We compared the Hausdorff
distance between the two approaches as well. Table III
indicates that the hybrid approach yields more accurate
results with the guidance of only a few landmarks.

TABLE III
HAUSDORFF DISTANCE ON FMRI DATA (MM)

Data 1 2 3 4 5
Unreg 10.44 9.95 9.36 7.73 11.06
Intensity 8.54 7.29 8.96 6.37 10.39
Hybrid 7.07 6.62 6.50 5.54 7.74

V. CONCLUSION

In this paper we present a new hybrid approach based
on diffeomorphic demons. Point-wise mutual information is

employed as the similarity metric in order to cope with
multimodal images. The energy functional combines both
intensity and landmark information. From the experiment
results on three different types of MRI datasets, we demon-
strate that by incorporating human interaction, difficult reg-
istration problems that cannot be solved by pure intensity-
based methods can be well registered by our hybrid approach.
This can support accurate localization of lesions which is in-
dispensable for many clinical application. Further work will
be focused on improving the way that intensity and landmark
information are combined by exploring more specific radial
basis function.
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