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Abstract. Robust and accurate identification of intervertebral discs
from low resolution, sparse MRI scans is essential for the automated scan
planning of the MRI spine scan. This paper presents a graphical model
based solution for the detection of both the positions and orientations
of intervertebral discs from low resolution, sparse MRI scans. Compared
with the existing graphical model based methods, the proposed method
does not need a training process using training data and it also has the
capability to automatically determine the number of vertebrae visible in
the image. Experiments on 25 low resolution, sparse spine MRI data sets
verified its performance.

1 Introduction

Spine examinations represent one of the most important clinical applications of
MRI. But the quality of the MRI scan diagnose depends on the accuracy and
consistency of the scan planning, which is usually carried out on a low resolution,
sparse survey data (usually only a few slices in the sagittal and coronal planes).
The core of the scan planning is to determine the positions and orientations
of intervertebral discs so that scan geometries of the follow-up diagnostic scans
such as off-center, angulation and field-of-view can be computed. Compared
with the operator dependent manual planning, automated scan planning (ASP)
is preferable in the aspect of consistency and speed of the planning. On the other
hand ASP is difficult due to the low image quality and the sparsity of the survey
data and the high structural complexity of the spine.

Several research groups have proposed different automated spine detection
and labeling methods, which is the core part of the ASP for the MRI spine scan.
Pekar et al. [1] develop an approach for labelling the vertebral column as part
of their scan geometry planning system. They search for possible disc locations
by filtering the sagittal slices to find horizontal line structures and finding the
centers of mass of the 3D connected components in the filtered images. Then 3D
connected components are selected to find disc centers by applying an iterative
procedure to remove candidates that form point triplets with unrealistically high
curvature. Weiss et al. [2] propose a semi-automatic technique for labelling discs



where disc centers are detected using threshold values, filters and noise suppres-
sion operators. The user manually marks one disc and the algorithm proceeds
by an iterative intensity analysis based method to find the connected disc chain.
In these approaches, the detection of candidate disc centers is highly dependent
on imaging quality and data dependent threshold values. Also the disc chain de-
tection procedure employs little contextual information of the spinal structure
except for the constraints on the curvature of the detected disc chain.

There exist heuristic methods for detecting vertebral bodies and interverbral
discs from dense CT or MR volume data [3][4][5]. For example, Peng et al.
[3] detect the intervertebral discs from MRI images for the segmentation of a
dense spine volume. In their method on each sagittal slice the disc clues are
detected by convoluting a disc model followed by a polynomial curve fitting to
the detected candidate points. The intensity pattern along the fitted curve helps
to determine the best sagittal slice, on which refined disc detection is carried
out by an intensity based local search along the fitted curve. Klinder et al. [4]
developed a method for automatic detection, identification and segmentation
of the vertebrae from a CT volume by exploiting statistical models of multi-cue
informaiton including shape, gradient and appearance of the spinal structures. A
more recent work by Štern et al. [5] introduced a completely automated algorithm
for the detection of the spinal centreline and the centres of vertebral bodies and
intervertebral discs in CT and MR volme images.

Probabilistic graphical models for automatically locating the vertebral col-
umn and labelling the intervertebral discs were recently proposed by Schmidt et
al. [6] focusing on whole spine and Corso et al. [7] dealing with lumbar spine MR
images. In each case, appearance information of the discs as well as spatial rela-
tionships between discs were incorporated in the model. In [6][7] they focus on
either the lumbar or the whole spine so that the number of intervertebral disks
is taken as fixed and they can thus build graphical models with a fixed number
of nodes. But in a general case to detect an unknown number of discs, the graph-
ical model approach faces a difficult model selection problem to determine the
disc number. Another problem of this approach is that due to the complexity of
the spine structure, most of the existing work ask for the involvement of prior
knowledge which is usually obtained by an off-line training. In [6][7], both the
low level image observation models and the high level disk context potentials are
learned using training data. Besides the fact that the model training is a complex
problem itself, the dependency on training data makes these approaches valid
only on the data with similar characteristics to the training data.

In this paper we propose a graphical model based intervertebral disc detec-
tion method from sparse MRI data for the automated MRI scan planning based
on our work on automated vertebra identification from X-ray images [8]. Dif-
ferent from the general approaches to directly locate the discs, we detect the
positions and orientations of discs in a two-step approach. We first designed a
graphical model to detect vertebra bodies from a user selected sagittal slice,
which can automatically determine the number of visible vertebrae during the
inference procedure. In our graphical model, both the low level image observa-



tion model and the high level vertebra context potentials need not to be learned
from training data. Instead they are capable of self-learning from the image data
during the inference procedure. Taking the vertebral body detection results as
the initialization, the positions and orientations of intervertebral discs can then
be detected by a particle filtering based procedure. The reliability of the pro-
posed method is demonstrated by an experiment on 25 low resolution fast echo
MRI spine data.

2 Method

2.1 A two step approach for the intervertebral disc detection

The work flow of the proposed intervertebral disc detection method is described
as follows

Initialization Users select a sagittal slice in which all the intervertebral discs
are visible. On the selected slice, users pick two landmarks to indicate the
center of the first and the last visible vertebral bodies.

Vertebral body detection A graphical model based approach is implemented
to detect the number, positions, orientations and sizes of all the vertebral
bodies on the user selected sagittal slice.

Intervertebral disc detection On the user selected sagittal slice interverte-
bral discs are detected using the vertebral body detection results as an ini-
tialization. For each detected disc on this sagittal slice, a coronal slice is
automatically selected and a second round of disc detection on this coronal
slice is carried out. Combining the disc detection results on both the sagittal
and coronal slices, the 3D geometrical information of intervertebral discs can
then be reconstructed.

2.2 Graphical model based vertebral body detection

Similar to [6], we build a graphical model G = {V,E} with N nodes for the
spine structure as shown in Figure. 1. Each node Vi, i = 0, 1, ..., N −1 represents
a vertebral body in the spine, which is modelled as a rectangular. We assign
Xi = {xi, yi, ri, hi, θi} to Vi to describe the center, radius, height and orientation
of Vi on a 2D slice as shown in Figure. 2. E = {ei,j}, i, j = 0, 1, 2, ..., N − 1
defines a connection matrix of the graph G. On G, we define the component
observation model p(I|Xi), i = 0, 1, ..., N−1 of a single component and potentials
p(Xi, Xj), i, j = 0, 1, ...N − 1, ei,j = 1 among neighboring components. p(I|Xi)
represents the probabilities that the configuration Xi of the nodes Vi matches the
observed images I and p(Xi,Xj) encodes the geometrical constraints between
components Vi and Vj . The identification of the spinal structure is then to find
the configurations of {Vi},X = {X0,Xi, ...,XN−1}, that maximizes

P (X|I) ∝
∏

i

p(I|Xi)
∏

ei,j=1

p(Xi,Xj) (1)



Fig. 1. Graphical model of the spine

Fig. 2. Vertebra body template for the component observation model

Component observation model The component observation model p(I|Xi)
is to match a template determined by Xi, a rectangular shown in Fig. 2, with
the observed image I defined as

p(I|Xi) = pI(I|Xi)pG(I|Xi)pV (I|Xi) (2)

The three items in (2) come from the intensity, gradient and local intensity
variance distribution on the template.

Intensity observation model pI(I|Xi): Given Xi, it determines a disk-vertebra-
disk template on the 2D image plane as shown in Fig. 2. We assume that the
interior area of the vertebra body has a homogeneous intensity distribution,
a Gaussian model N (µi, σi), which is different from the intensity distribution
of the border region, which is defined as a small neighbourhood outside the
vertebra body. For each pixel s that falls in the interior and border region of
the template as shown in Fig. 2, the image appearance value of s is defined
as

p(s|Xi) = e
− (I(s)−µi)

2

2σ2
i (3)



We define pI(I|Xi) = eωIc
i
I , where ciI is the cross-correlation between the

image appearance values p(s|Xi) and a binary template which sets value 1
to the interior area of the template and 0 to the border region. ωI > 0 is
a weighting factor. Intuitively this means that we assume that the interior
region of the template should obey the Gaussian distribution and the bor-
der area should have a different intensity distribution. The Gaussian model
N (µi, σi) can be learned from the observed image once Xi is given.

Gradient observation model pG(I|Xi): Similar to pI(I|Xi), we can define
pG(I|Xi) = eωGciG , where ciG is the cross-correlation between the gradient
image values of the observed image in the template area and a binary gra-
dient template, which sets 0 in the interior area and 1 in the border region.
This means strong gradient values should only happen on the border of the
vertebra template.

Local variance observation model pV (I|Xi): We compute the local variance
image IV of the image I, which is defined as the intensity variance in a small
window centered at each pixel. We define pV (I|Xi) = eωV ciV , where ciV is the
cross-correlation between the local variance values and a binary template
identical to the gradient template.

It can also be observed that the three items in the component observation model
do not depend on prior information learned from training data.

Potentials between components Inter-node potentials set constraints on
the geometries of the nodes {Vi} so that all the nodes will be assembled to a
meaningful spine structure. We define

p(Xi,Xj) = pS(Xi,Xj)pO(Xi,Xj)pD(Xi,Xj) (4)

Size constraints pS(Xi,Xj) is used to set constraints on the sizes of the neigh-
boring components defined as

pS(Xi,Xj) = e
−(ωr

|ri−rj |
|ri+rj |

+ωh
|hi−hj |
|hi+hj |

)/|i−j|
(5)

Orientation constraints We define

pO(Xi,Xj) = e−ωoai•ai/|i−j| (6)

to ensure that neighboring vertebra bodies should have similar orientations.
Distance constraints For direct neighboring nodes Vi,Vj , |i − j| = 1, we

define constraints on the distance between the vertebra body centers as

pD(Xi,Xj) =

{
e
−ωD

dC,ij−(dh,ij)/2
dh,ij , 5

4dh,ij > dC,ij > dh,ij

0 , elsewhere
(7)

This asks the distance between neighboring vertebral centers is roughly the
same as their mean height so that Vi,Vj are closely connected.



Inference The graphical model based inference aims to find both the number
of vertebrae N and their geometrical parameters. Instead of carrying out the
inference on {Xi} and N simultaneously, we implement a sequential inference
procedure on a simplified graphical model, a Markov chain where each node is
only connected with its previous node so that

P (X0,X1, ..,Xi|I) ∝ p(I|X0)
i∏

k=1

p(I|Xk)p(Xk,Xk−1) (8)

Given the configuration of X0, ...,Xi−1, the distribution of node Vi depends
only on its image observation model p(I|Xi) and the potential p(Xi,Xi−1). The
inference can then be achieved by a trunked particle filtering on this Markov
chain as follows

Given the configuration Xi−1 of node Vi−1,
(a). Draw K random configurations (particles) of Vi, Xk

i , k = 0, 1, ...,K − 1 and
compute the believes of each particle as bki ∝ p(I|Xk

i )p(Xk
i ,Xi−1).

(b). Re-sample the particles according to {bki } and update their configurations
by a Gaussian random walking.
(c). Repeat a,b till converge and select the particle with the highest believe as
the configuration of Vi.

Given the user initialization to indicate the first vertebra, this sequential in-
ferencing procedure can be carried out on the user selected sagittal slice to detect
all the vertebra bodies until the user indicated last vertebral body is reached.
Obviously the inference result includes both the number and configurations of
the vertebral bodies.

3 Intervertebral disc detection

The detected vertebra bodies provide a descent initialization for the disc de-
tection. Similar to the rectangular template for vertebra bodies, intervertebral
discs can also be modelled by a rectangular with a parameter set Yi. Accordingly
an image observation model p(I|Yi) and the potential between a disc and its
neighboring vertebral bodies p(Yi,Xi), p(Yi,Xi+1) can be defined for discs.

3.1 Intervertebral disc detection on sagittal slices

On the user defined sagittal slice, between each pair of neighboring vertebra bod-
ies a disc can be detected by a particle filtering similar to the vertebra body de-
tection, where the believe of a disc is computed as p(I|Yi)p(Yi,Xi)p(Yi,Xi+1).



3.2 Intervertebral disc detection on coronal slices

The detected 2D geometrical configuration of a disc can guide us to automatically
select a coronal slice which is nearest to the detected disc center. Accordingly
the same disc can also be detected on this coronal slice.

3.3 3D intervertebral disc configuration from 2D detection results

The 3D geometrical information of a disc, for example its center, orientation,
radius and height, can be easily reconstructed from the 2D detection results on
both the sagittal and coronal slices.

4 Experimental Results

We verified out algorithm on 25 fast echo spine locator data set focusing on the
thoracic and lumbar region. In each data set there are 5 to 11 slices in sagittal
and coronal planes. The slice distance varies from 6.5mm to 10mm. The image
resolution varies from 0.58mm to 1.95mm. The result of our algorithm on one
data set is shown in Figure. 3. Our evaluation focuses on the disc center and the
disc plane orientation which are the most important factors for scan planning
geometries. On each data set the ground truth of these parameters is defined
manually. Since our algorithm is a statistical solution, we carried out 4 trials
on each data set. On all the 25 data sets the numbers of discs are correctly
detected. The mean errors of the disc center and disc plane orientation are less
than 5mm and 5 degrees respectively. It also need to be pointed out that the
detection error of the disc center is mainly along the directions of disc planes but
not in the normal directions so that the 5mm error of the disc center detection
is acceptable for the scan geometry computation. the The execution time on a
normal PC is around 1 second per disc.

(a) Vertebral body detec-
tion results on the user se-
lected sagittal slice

(b) The detection of the
intervertebral discs on the
user selected sagittal slice

(c) The detection of the
intervertebral discs on the
coronal slices

Fig. 3. The result of the graphical model based vertebra body detection and particle
filtering based intervertebral disc detection on a spine locator data



5 Discussion and Conclusion

In this paper we proposed a graphical model based method for automated detec-
tion of intervertebral discs from low resolution MRI images. The reason that we
first detect the vertebral bodies to guide the disc detection instead of directly
detecting the discs is that the vertebral bodies can be more reliably detected
than the discs due to its relatively strong border. Another reason is that the
geometrical information of vertebral bodies can help to design the potentials be-
tween nodes in our graphical model, i.e. the geometrical parameters of vertebral
bodies can provide more context information to guide our graphical model based
detection. Compared to existing graphical model based approach, our approach
has the following advantages: (1) It need not to be trained using training data,
(2) It does not ask for the prior information of the examined anatomical region
and (3) It can automatically identify the number of vertebrae visible in the im-
age. The experimental results on the low resolution spine locator data show that
our method can achieve robust and accurate intervertebral disc detection, which
can be feeded to the scan geometry planning of the spine MRI check.
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