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Abstract—Image-based modeling of tumor growth combines
methods from cancer simulation and medical imaging. In this
context, we present a novel approach to adapt a healthy brain
atlas to MR images of tumor patients. In order to establish
correspondence between a healthy atlas and a pathologic patient
image, tumor growth modeling in combination with registration
algorithms is employed. In a first step, the tumor is grown in the
atlas based on a new multi-scale, multi-physics model including
growth simulation from the cellular level up to the biomechanical
level, accounting for cell proliferation and tissue deformations.
Large-scale deformations are handled with an Eulerian approach
for finite element computations, which can operate directly on the
image voxel mesh. Subsequently, dense correspondence between
the modified atlas and patient image is established using non-
rigid registration. The method offers opportunities in atlas-
based segmentation of tumor-bearing brain images as well as
for improved patient-specific simulation and prognosis of tumor
progression.

Index Terms—Brain Tumor, Glioma, Image Analysis, Tumor
Growth Modeling, Tumor Biomechanics

I. INTRODUCTION

COMPUTATIONAL ONCOLOGY is recently gaining in-
creased attention among the research community. This

field aims to investigate computational models for tumor pro-
gression, which can help to better understand the phenomenon
of cancer and finally provide better diagnosis and treatment
plans for patients. Current approaches range from the molec-
ular, to the cellular, up to the macroscopic level including
biomechanics. In Stamatakos et al. [1] an “Oncosimulator”
has been proposed, which aims to model cancer progression
on a biological level, taking into account cell proliferation.
Konukoglu et al. [2] used physical models to better understand
the progression of gliomas by adapting reaction-diffusion
dynamics. As gliomas also exhibit a significant mass-effect on
the surrounding tissues, biomechanics should be considered as
presented by Hogea et al. [3].

Brain tumor image analysis is a more established field
than computational oncology, however active research is being
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conducted to handle the varying appearance of brain tumors,
which makes generic tumor-bearing brain segmentation and
registration a challenging task. While the majority of methods
are mostly concerned with tumor segmentation, e.g. Verma et
al. [4], fewer work has been done on aligning brain tumor
images with a standard template using registration. One of the
latest efforts to adapt a registration and segmentation method
for brain tumor images was done by Zacharaki et al. [5]. In
this work, a purely macroscopic biomechanical tumor growth
model is used to simulate tumor growth in a healthy atlas,
which is subsequently registered to the patient image using
deformable registration algorithms.

The aim of this paper is to present a novel multi-scale
method for patient-specific adaptation of a healthy brain atlas
to tumor patient images, which also offers implicit segmen-
tation of the brain tissues. A major problem is to establish
correspondence between a healthy atlas and a tumor-bearing
patient image in a generic way. To this end, we combine
patient-specific tumor growth simulation with medical image
analysis. The approach comprises a multi-scale, multi-physics
model of tumor growth and progression, from the cellular, up
to the biomechanical level, and state-of-the art methods for
non-rigid registration of brain images.

II. METHODS

In a first step, we simulate tumor growth in a healthy brain
atlas. We use the publicly available SRI24 atlas provided by
Rohlfing et al. [6], which is an average of 24 normal adult
subjects. This atlas provides different modalities, including
label maps. It exhibits increased sharpness, making it suitable
for atlas-based segmentation purposes.

After applying a preprocessing pipeline to the patient image,
including intensity normalization, customized skull-stripping1,
edge-preserving smoothing and bias-field correction, initial
correspondence between the atlas and the patient image is es-
tablished using an affine registration method. Next, the tumor
area in the patient can either be delineated manually or using
classification methods on multi-modal magnetic resonance
(MR) images as shown in [4]. A physically realistic seed for
tumor growth is automatically chosen in the vicinity of the
center of mass of the patient tumor, with the patient tumor
outline also delimiting the growth process later.

1software tool available at
www.istb.unibe.ch/content/surgical technologies/medical image analysis/software
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Fig. 1. Illustration of the coupling between the bio-cellular simulator and
the bio-mechanical simulator. Both modules are iteratively called to simulate
the growth process.

A. Simulating Tumor Growth with a coupled Bio-Physical-
Bio-Mechanical Model

In order to provide a comprehensive perspective on tumor
growth, two models focusing on both different length and
time scales as well as different physics have been coupled
to constitute a self-consistent multi-scale approach. The first
model is a discrete entity - discrete event cellular level based
oncosimulator focusing on biological phenomena like cell
cycling and apoptosis. Due to the macroscopic view, the effect
of probabilistic rules of this model on the final result is neg-
ligible. A detailed description of the method and the relevant
parameters (which are all obtained from literature data) can
be found in [1]. This cellular level model, while providing a
detailed description of the cellular evolution of the imageable
component of the tumor, assumes a conformal expansion
or shrinkage of the tumor due to a lack of information on
preferred growth directions. This motivates the coupling with
a biomechanical stress/strain simulation, which can provide
pressure gradient information [7]. The latter solves a linear
elastic model on a brain atlas using values for the Young’s
modulus E and Poisson ratio ν for different constituent
brain materials from established publications [8]. Since the
limit of applicability of the standard Lagrangian formulation
of structural mechanics can easily be reached under large
deformations as occurring in rapid tumor growth, an Eulerian
approach has been implemented. In the latter formulation,
the calculation is performed on a fixed geometrical mesh
and material properties are advected to neighboring elements
upon deformation. This offers the additional advantage that the
simulation can operate directly on the voxel mesh obtained
from the image, without the need for complex and time-
consuming automatic meshing methods.

The coupling of the two aforementioned models is outlined
in the following: On the one hand, the cell simulator requires
information on the direction to which new tumor cells will
spread, which can be decided based on the pressure of the
surrounding tissue. On the other hand, the mechanical simu-
lation needs information on the amount by which individual
geometrical cells will expand, which in turn can be extracted
from the cell concentrations calculated by the cellular simula-
tor. This is illustrated in figure 1.

As far as the direction decision is concerned, newly pro-
duced biological cells follow the direction d of least pressure
p, i.e. the negative gradient

d = − ∇p
||∇p||

. (1)

In the discrete formulation of the code, each geometrical
element e is attributed a pressure p(e) given in terms of the

trace of the stress tensor σ by

p =
1
3
Tr(σ). (2)

The corresponding direction of least pressure d(e) is then
found as the vector pointing to the center of element emin,
defined as

emin = argmin{p(f)|dist(f, e) < R}. (3)

R here denotes the distance to the nearest neighbors and must
be increased to next-nearest neighbors upon full occupancy.
Note that the minimum pressure only has to be determined
when a direction is requested, i.e. it is not necessary to keep
a full map of least pressures as cell proliferation is gener-
ally only taking place in small regions of the computational
domain.

Due to the space-dependent mechanical properties arising
from the segmentation into gray matter, white matter and
ventricles, a growing tumor generates a non-uniform stress
distribution. A linear elastic model with Young’s modulus
E and Poisson ratio ν serves as governing physical law for
the deformation and arising stress. This stress distribution,
along with the boundary conditions of zero displacement
imposed by the fixed skull, provides a non-uniform pressure
environment. From this information, a pressure gradient force
can be derived, which allows us to determine the most likely
proliferation direction.

In order to address the volume change of elements, the
volume of a geometrical element V (c), computed as a function
of the biological cell concentration c is assumed to follow the
relation

V (c) = V0
c

c0
, (4)

where V0 represents the volume at the reference concentration
c0 (here set to 3 × 106 cells mm−3). The obtained volume
change subsequently serves as input for the material law used
in the biomechanical stress/strain calculation.

The tumor is grown in the atlas according to this approach
until the approximate tumor volume in the patient is reached.
Based on experience, growth iterations are stopped once the
simulated tumor reaches 90% of the volume of the tumor in
the patient image, while the final deformation is handled by
the non-rigid registration algorithm.

Due to restrictions imposed by the computational com-
plexity of the multi-scale growth model, tumor growth is
performed on a coarser version of the atlas only. Therefore, the
image is subsampled by a factor of two, to obtain a resolution
of 2 mm in each dimension.

B. Adapting the Modified Atlas to the Patient Image

After tumor growth modeling, the modified atlas is warped
to the patient image using a non-rigid, intensity-based registra-
tion technique. We use the Diffeomorphic Demons registration
method introduced by Vercauteren et al. [9]. This algorithm
offers fast non-parametric registration and yields a dense
deformation field which can be used to warp the atlas label
map or any other atlas map available.
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Fig. 2. Results shown on one axial slice of the simulated dataset Case-
1S. From left to right: the patient image (a), the atlas image after tumor
growth simulation and registration (b), a checkerboard of patient and atlas
tissue image after tumor growth simulation & registration (c), and finally a
checkerboard of patient and atlas label image after tumor growth simulation
& registration (d). A hot-metal and a gray-level colormap have been used for
generating the checkerboard images.

The idea of this registration method is to treat registration
as an optimization problem and minimize an energy function
E, which corresponds to the similarity between both images,
where similarity is based on image intensities. We perform
the optimization using a cascade of three resolution levels in
order to increase robustness and speed. The Diffeomorphic
Demons method has the advantage of being fast and producing
physically justifiable and realistic deformations by ensuring
the invertibility of the deformation field.

III. RESULTS

It has been demonstrated recently that applying a tumor
growth-model before non-rigid registration improves the out-
come compared to using a standard registration technique [10].
For the current study, the proposed method was evaluated on
volumetric T1-weighted MR images of 4 simulated glioma
datasets with 1x1x1 mm resolution, provided by Prastawa et
al. [11], and volumetric T1-weighted MR images with 1x1x2
mm resolution of 4 real glioma patient datasets from the
ContraCancrum database [12]. For the datasets from [11] a
ground-truth segmentation exists, while the datasets from [12]
have been semi-manually segmented in order to provide a
“ground-truth” for quantitative evaluation.

Figure 2 shows the results for one simulated case. From
left to right one can see the patient image, the registered atlas
image after tumor-growth simulation and a checkerboard of
the tissue and of the label images. The checkerboard images
demonstrate a good match after adapting the atlas to the patient
image.

In terms of quantitative analysis, table I summarizes the
Dice similarity coefficients we obtained for the four synthetic
cases and for the four real patient cases. The Dice coefficient
measures the mean overlap between two regions, it can range
from 0 (indicating no overlap) to 1 (indicating perfect overlap).
Dice similarity for the relevant tissues cerebrospinal fluid
(CSF), gray matter (GM) and white matter (WM) ranged
between 0.56 and 0.8. When compared to a recently published
simpler, purely biomechanical tumor growth model [10], Dice
results were similar, but sometimes slightly inferior on the
same data (at maximum 4% less overlap). Further tests showed
that the final result is not sensitive to small variations in seed
point location or tumor growth stop condition.

In figure 3 several steps of the algorithm are depicted for
one of the four real patient cases from the ContraCancrum
database. In the top row, the patient image, the atlas image

TABLE I
DICE SIMILARITY COEFFICIENTS USING THE PROPOSED METHOD FOR THE

SYNTHETIC DATASETS (CASE-XS) AND THE REAL PATIENT DATASETS
(CASE-XP). WE SHOW DICE SIMILARITY COEFFICIENTS FOR

CEREBROSPINAL FLUID (CSF), GRAY MATTER (GM), WHITE MATTER
(WM) AND THE TUMOR REGION.

CSF GM WM Tumor

Case-1S 0.66 0.75 0.78 0.94
Case-2S 0.62 0.76 0.77 0.94
Case-3S 0.65 0.75 0.78 0.95
Case-4S 0.65 0.76 0.8 0.97

Case-1P 0.56 0.72 0.77 0.92
Case-2P 0.60 0.75 0.78 0.93
Case-3P 0.58 0.67 0.73 0.92
Case-4P 0.57 0.69 0.71 0.76

Fig. 3. Evolution of results shown on one axial slice of ContraCancrum
real patient Case-1P. Top row, left to right: Patient image (a), seeded atlas
after affine registration (b), deformed atlas during intermediate step of tumor
growth (c). Bottom row, left to right: Deformed atlas after final step of tumor
growth (d), non-rigidly registered modified atlas (e), checkerboard of patient
and atlas tissue image after tumor growth simulation & registration (f).

with the tumor seed and an intermediate growth iteration step
in the atlas are shown from left to right. In the bottom row one
can see the deformed atlas after the final growth iteration, the
adapted atlas after tumor growth and non-rigid registration and
a checkerboard of the atlas and patient tissue images. It can
be observed how the ventricles and other surrounding tissues
are deformed by the tumor mass-effect during the growth
process. However, the final deformation of individual tissues
can only be achieved by the non-rigid registration process.
From the checkerboard images it is obvious that the atlas
is apparently well adapted to the patient image after tumor-
growth simulation and non-rigid registration.

Figure 4 shows an axial, coronal and sagittal view of the
atlas adapted to the same real patient dataset Case-1P. In the
first row, the deformed atlas label map after the final growth
step is depicted. The second row illustrates the magnitude of
the displacement field after the final step of tumor growth.
The displacement field determines how much each individual
voxel is pushed due to the biomechanical mass-effect of the
tumor, which is determined by the increase in number of
cells computed from the oncosimulator. As expected, we can
observe a strong displacement in areas directly affected by
the tumor and a smaller displacement for areas further away.
Additionally, it is obvious from the displacement field how the
cell simulator accounts for the necrotic core of the tumor. No
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Fig. 4. ContraCancrum real patient Case-1P. First row: Deformed atlas label
map after the final step of tumor growth in axial (a), coronal (b) and sagittal
(c) view, Second row: Magnitude of the displacement field after the final step
of tumor growth in axial (d), coronal (e) and sagittal (f) view, Third Row:
Atlas label image after tumor growth and non-rigid registration in axial (g),
coronal (h) and sagittal (i) view.

new cells are produced in the center, which ensures that the
biomechanical deformation only takes place at the rim of the
tumor, not in the center. The third row shows the atlas label
map after the tumor-growth and non-rigid registration step.

Depending on the size of the tumor, total computation time
was between 10 hours and 36 hours on a single CPU running
at 2.67 GHz. Computation time was almost completely deter-
mined by the iteratively coupled tumor-growth model, which
involves the repetitive solution of large systems of equations.

IV. DISCUSSION AND CONCLUSION

We presented a new method which makes use of sophisti-
cated models of bio-physio-mechanical tumor growth to adapt
a general brain atlas to an individual tumor patient image.
It can be applied for solid tumors and gliomas with distinct
boundaries to capture the important tumor mass-effect, while
the less pronounced infiltration effect is not considered in this
case. The method essentially comprises two steps: patient-
specific tumor growth modeling in combination with non-
rigid registration techniques, where the proposed method for
tumor growth modeling integrates discrete and continuous
approaches for simulation.

The results show that it is possible to adapt a healthy atlas
to a tumor-bearing patient image using the proposed approach.
Quantitative overlap measures indicate that this sophisticated
method achieves reasonable results in a similar range as other
models [10] without being very sensitive to the initial and
stopping conditions of the growth model. The accuracy of
Dice coefficients is also comparable to values reported for a
different approach in [5], however different data was used in
this case. We expect better results when using the full image
resolution for the tumor growth model. Computation times are
significantly longer compared to the approach in [10] because
several bio-physical and biomechanical layers are taken into
account.

The proposed method offers the possibility to implicitly
segment tumor-bearing brain images by atlas-based registra-
tion. This is not only important for brain tissue segmentation,
but it also allows us to easily delineate subcortical structures
by label-map propagation, which can be useful for surgical
planning of brain tumor resection or for radiotherapy planning.

A. Outlook

The deformation vector field obtained after non-rigid reg-
istration can be used to simultaneously warp other atlas
maps, e.g. diffusion tensor images, to the patient. We plan to
investigate if a patient-specific diffusion map then allows for
more precise predictions of tumor progression. A significant
potential for speed-up by parallelization of the algorithm was
observed in initial trials. We plan to exploit this, so that the
method can be used in a clinical scenario.
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