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Abstract— In many tertiary clinical care centers, decision-
making and treatment selection for acute ischemic stroke is
based on magnetic resonance imaging (MRI). The “mismatch”
concept aims to segregate the infarct core from potentially
salvageable hypo-perfused tissue, the so-called penumbra that
is determined from a combination of different MRI modalities.
Recent studies have challenged the current concept of tissue at
risk stratification targeted to identify the best treatment options
for every individual patient. Here, we propose a novel, more
elaborate image analysis approach that is based on supervised
classification methods to automatically segment and predict the
extent of the tissue compartments of interest (healthy, infarct,
penumbra regions). The output of the algorithm is a label image
including quantitative volumetric information about each tissue
compartment. The approach has been evaluated on an image
dataset of 10 stroke patients and it compared favorably to
currently available tools.

I. INTRODUCTION

Stroke is the 2nd most frequent cause of death and a
major cause of disability in industrial countries. In patients
who survive, stroke is frequently associated with high socio-
economic costs due to persistent disability [1]. An acute
ischemic stroke is characterized by sudden impairment of
brain function due to a reduced oxygen supply caused by
an immediate vessel occlusion or embolism to the brain.
Advanced neuroimaging techniques are recommended for a
quick, reliable diagnosis and stratification for therapy [2].
Magnetic resonance imaging (MRI) identifies the infarct core
by diffusion-weighted imaging and hypo-perfused, yet vital
surrounding tissue that can be potentially rescued (i.e. the
“penumbra”). Treatment options for acute stroke aim at an
early and sustained revascularization of occluded vessels,
preferably by thrombectomy or intravenous thrombolysis in
specialized centers [3]. In clinical practice, imaging anal-
ysis and treatment decision is performed visually by the
neuroradiologist and stroke neurologist. Automatic methods
for medical image analysis could further aid in making
fast decisions based on more detailed information otherwise
neglected by visual analysis [4]. Stroke MR protocols include
a wealth of information that is composed of structural (non-
enhanced and enhanced T1-weighted, T2-weighted, FLAIR)
and functional (perfusion- and diffusion-weighted) image
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datasets and vessel imaging (magnetic resonance angiogra-
phy (MRA)).

These datasets could be further explored towards proper
identification of patients that are most likely to benefit from
endovascular stroke treatment. Imaging might also aid in the
identification of patients who would benefit from a further
extension of the time-window after stroke where patients are
candidates for endovascular therapies. Currently, the most
crucial imaging feature for this decision is the volumetric
mismatch between the penumbra that can potentially be
saved and the irreversibly damaged infarct core. Several
studies indicated that the larger this mismatch, the more
likely the patient is going to have a favorable prognosis [5].
Recently, these data have been challenged by negative multi-
centric randomized trials (IMS III [6], MR-Rescue [7]).

Computer-assisted image analysis could help to quantify
this mismatch, however as mentioned in a recent review
paper [4], there are only few approaches available in the
literature that explore this issue in a convincing way. Many
works in the medical image analysis focus either on the
segmentation of the infarct only (e.g. [8]) or the hypo-
perfused region only (e.g. [9]). The few approaches that
consider both regions simultaneously usually have limited
accuracy because they rely on overly simplistic classification
models (e.g. [10]).

An automated image analysis tool to identify candi-
dates for acute stroke treatment has recently been pro-
posed (RAPID [11]). This approach relies on diffusion- and
perfusion-weighted MR images to quantify the mismatch.
For identification of the ischemic core, the Apparent Diffu-
sion Coefficient, a quantitative measure derived from diffu-
sion images, is thresholded at values < 600·10−6 mm2/s. To
identify the penumbra region, the Tmax map derived from the
DSC-perfusion images is thresholded at values > 6 seconds.
Some additional morphological constraints are applied to
suppress outliers. Despite encouraging results reported by the
authors, clinical trials have lead to controversial outcomes
about the clinical benefit of this approach [7], [5].

We hypothesize that the currently recommended, some-
what simplified two-parameter approach to identify infarct
core and penumbra could be further improved, if modern
concepts from machine learning are engaged instead of sim-
ple thresholding methods. Therefore, we propose to employ
a supervised classification approach for performing a multi-
parametric segmentation from a number of different MRI
modalities with training based on manually labeled samples.



Fig. 1. Illustration of the workflow for the complete segmentation /
prediction pipeline.

II. METHODS

The segmentation is based on structural and functional MR
images. T1-weighted images with contrast enhancement, T2-
weighted images, diffusion-weighted images and dynamic
susceptibiliy contrast (DSC) perfusion-weighted images have
been acquired from acute ischemic stroke patients before
and after therapy. From the diffusion-weighted images, the
apparent diffusion coefficient (ADC) maps were extracted
and from the perfusion-weighted images, four standard per-
fusion maps were computed using the PMA toolbox 1.
The perfusion maps comprised cerebral blood flow (CBF),
cerebral blood volume (CBV), mean transit time (MTT) and
the peak time (Tmax). All modalities (T1contrast, T2, ADC,
CBF, CBV, MTT, Tmax) pre- and post-treatment were rigidly
registered to the pre-treatment T1contrast image of the same
patient and automatically skull-stripped [12]. The 7 pre-
treatment MRI modalities (T1contrast, T2, ADC, CBF, CBV,
MTT, Tmax) were used as an input for the segmentation
algorithm. The complete workflow is illustrated in figure 1.

The proposed segmentation method is conceptually in-
spired by a work on multi-modal brain tumor segmentation
[13], [14]. The segmentation task is cast as an energy
minimization problem in a conditional random field context,
with the energy to be minimized being expressed as

E =
∑
i

V (yi,xi) +
∑
ij

W (yi, yj ,xi,xj) (1)

where the first term in equation (1) corresponds to the
voxel-wise singleton potentials and the second term corre-
sponds to the pairwise potentials, modeling voxel-to-voxel
interactions. x is a voxel-wise feature vector and y the final
segmentation label. The singleton potentials are computed
by a decision forest classifier [15]. A decision forest is

1http://asist.umin.jp/index-e.htm

a supervised classifier that makes use of training data for
computing a probabilistic output label for every voxel based
on a certain feature vector. We use a 283-dimensional feature
vector x as an input for the classifier, consisting of the
voxel-wise intensities, and multi-scale local texture, gradient,
symmetry and position descriptors of each modality. These
singleton potentials are computed according to equation (2),
with p(ỹi|xi) being the output probability from the classifier
and δ is the Kronecker-δ function.

V (yi,xi) = p(ỹi|xi) · (1− δ(ỹi, yi)) (2)

The second term in equation (1) corresponds to the
pairwise potentials, introducing a spatial regularization in
order to suppress noisy outputs caused by outliers. It is
computed according to equation (3), where ws(i, j) is a
weighting function that depends on the voxel spacing of the
image in each dimension. The term (1− δ(yi, yj)) penalizes
different labels of neighboring voxels and the degree of
neighborhood smoothing is regulated by the difference of
the feature vectors in exp

(
|xi−xj |

2·x̄

)
W (yi, yj ,xi,xj) = ws(i, j)·(1−δ(yi, yj))·exp

(
|xi − xj |

2 · x̄

)
(3)

Optimization of the energy function in equation (1) is
achieved with fast primal-dual strategies from [16].

We propose two different approaches using the same basic
method, but with different training sets:
• approach A is a classical segmentation approach, where

the training is based on manual segmentations of infarct
core and penumbra on the pre-treatment images (same
parameters for the manual segmentation as in [11])

• approach B aims for prediction instead of segmentation.
The training is also based on manual segmentation,
but only the penumbra is defined on the pre-treatment
images, whereas the infarct core is the real infarct,
which is defined on the T2-weighted images from the
follow-up exam after 3 months. Please note that the 3
month follow-up images are only needed for generating
the training data, for running and testing the algorithm
only the pre-treatment images are needed. This ensures
that the approach can be used for decision-making
before treatment.

III. RESULTS

We used the proposed segmentation approach for au-
tomatic MRI volumetry of 10 stroke patients, employing
a leave-one-out cross-validation concept for training and
testing. The ground-truth for the infarct core and penumbra
regions, against which the proposed methods were compared,
was defined by an expert. The infarct core was defined as
the largest connected component with hyperintensity on the
T2-weighted 3-month follow up images. The penumbra was
defined as the connected component with Tmax>6s on the
baseline image. The results of the proposed approaches A



Fig. 2. Example of the results on patient W: The first row shows the
T1contrast image, T2 image and ADC map before treatment on an axial
slice from left to right. The image on the very right (gray frame) shows the
T2 follow-up image after 3 months. The second row shows the perfusion
maps before treatment (CBF, CBV, MTT, Tmax from left to right). The third
row shows the segmentations, where red corresponds to healthy tissue, green
is the infarct core and blue is the penumbra region. From left to right the
labels resulting from RAPID and the labels resulting from our proposed
method A and B are shown. The manually labeled groundtruth is depicted
on the very right (yellow frame).

and B were compared with our own implementation of the
state of the art RAPID approach [11].

Figure 2 shows the results for a patient who has an
infarct core and a penumbra region. The first row depicts
the structural images before treatment (T1contrast, T2, ADC
map from left to right) and the T2 image after treatment (very
right). The second row shows the calculated perfusion maps
before treatment (CBF, CBV, MTT, Tmax). And the last row
visualizes the segmentation results. From left to right, the
RAPID segmentation, our approach A and approach B and
finally the groundtruth are shown. It can be seen that the
RAPID approach looks quite noisy with many outliers due
to the simple thresholding procedure. The segmentations of
approach A and approach B look more convincing and it can
be seen that approach B does a better job at predicting the
real infarct core.

Figure 3 shows the results for a patient who has no infarct
core at the follow-up examination. However, both RAPID
and also approach A seem to detect false positives outside
the true infarct. Also here, the predictive approach B seems
to do a better job because only penumbra, no infarct region
is detected.

For quantitative evaluation of the results, we used the
established Dice score [17], which can range between 0 and
1, where 0 indicates no overlap and 1 indicates a perfect
overlap. Additionally, we also calculated the absolute volume
error of the segmented regions in ml. This metric is clini-
cally most relevant because the volumetric infarct/penumbra
mismatch will support the treatment decision. In table I, we
compared our own implementation of the RAPID approach
[11], our proposed method A and our proposed method

Fig. 3. Example of the results on patient E: The first row shows the
T1contrast image, T2 image and ADC map before treatment on an axial
slice from left to right. The image on the very right (gray frame) shows the
T2 follow-up image after 3 months. The second row shows the perfusion
maps before treatment (CBF, CBV, MTT, Tmax from left to right). The third
row shows the segmentations, where red corresponds to healthy tissue, green
is the infarct core and blue is the penumbra region. From left to right the
labels resulting from RAPID and the labels resulting from our proposed
method A and B are shown. The manually labeled groundtruth is depicted
on the very right (yellow frame).

TABLE I
DICE SCORES AND ABSOLUTE VOLUME ERROR RELATIVE TO THE

MANUALLY DEFINED GROUNDTRUTH FOR 10 PATIENTS

(MEAN±STDDEV). RESULTS ARE SHOWN FOR THE PROPOSED METHODS

AND FOR OUR IMPLEMENTATION OF THE RAPID APPROACH AS A

COMPARISON.

infarct core penumbra

Dice score RAPID 0.10±0.11 0.53±0.24
Dice score our approach A 0.21±0.20 0.57±0.24
Dice score our approach B 0.13±0.19 0.61±0.22

abs volume error RAPID 43±21 ml 143±123 ml
abs volume error our approach A 25±33 ml 51±72 ml
abs volume error our approach B 23±35 ml 44±72 ml

B with the manually defined groundtruth. Results show
consistently better results for the proposed methods in terms
of Dice score and also in terms of absolute volume error. The
absolute volume error is best for the predictive approach B,
but even approach A exhibits less than half of the volume
error of the RAPID method. The relatively low values for
the Dice score are caused by two factors: First, we are
dealing with a prediction problem, not a simple segmentation
problem because the ground-truth is defined on the 3-month
follow-up images, not the pre-treatment images. And second,
the low scores of the infarct region in particular are caused
by the fact that this region is relatively small and the Dice
score is biased by the size of the region.

Computation time is crucial for decision making in stroke
because “time is brain”. After pre-processing (registration
and calculation of the perfusion maps), computation time
for both approach A and approach B is slightly longer



than the computation time of RAPID, but always less than
one minute. Pre-processing takes several minutes, mostly
dominated by the time needed for computing the perfusion
maps. This is currently done offline because the perfusion
maps are regarded as an external input and the method is
not integrated into the clinical workflow yet.

IV. DISCUSSION & CONCLUSIONS

Here, we propose a novel method for image-based seg-
mentation and prediction of the infarct core and penumbra
region in stroke patients. Integrating all the information that
is available within routine MRI datasets offers advantages for
treatment selection in individual patients. Our first, prelim-
inary experience from the evaluation on 10 patients shows
promising results and may serve as a proof of concept.

Both the newly proposed approaches provide meaningful
results overall. The accuracy regarding the penumbra is
slightly higher for approach B. However the accuracy regard-
ing the infarct core is inconclusive: from visual inspection,
the predictive approach B seems to have advantages over ap-
proach A, this is also confirmed quantitatively by the volume
error. The Dice score in contrast, is lower for the infarct core
using approach B. It remains to be investigated on a larger
dataset, whether the segmentation-oriented approach A or
the prediction-oriented approach B offers more potential. In
fact, the quality of the prediction also depends on the way
of treatment and the treatment success, therefore it might
be useful to carry out the analysis on different patient sub-
groups individually.

The potential and clinical benefit of the proposed method
can only be evaluated in a prospective clinical study, where
the classifier has been trained on a large dataset. For ac-
curate prediction, clinically meaningful information, such as
the stroke topography, severity, the vascular supply of the
hypo-perfused tissue and other prognostic factors should be
identified and incorporated as modeling parameters.
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