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    Abstract  

  In diagnostic neuroradiology as well as in 
radiation oncology and neurosurgery, there is 
an increasing demand for accurate segmenta-
tion of tumor-bearing brain images. Atlas-
based segmentation is an appealing automatic 
technique thanks to its robustness and versatil-
ity. However, atlas-based segmentation of 
tumor-bearing brain images is challenging due 
to the confounding effects of the tumor in the 
patient image. In this article, we provide a brief 
background on brain tumor imaging and intro-
duce the clinical perspective, before we cate-
gorize and review the state of the art in the 
current literature on atlas- based segmentation 
for tumor-bearing brain images. We also present 
selected methods and results from our own 
research in more detail. Finally, we conclude 
with a short summary and look at new devel-
opments in the fi eld, including requirements 
for future routine clinical use.  

        Introduction 

    Brain Tumors and Clinical Brain 
Tumor Imaging 

 Although brain tumors are not frequent (with an 
incidence of about 1 ‰ in the western popula-
tion), they are among the most fatal cancers 
(DeAngelis  2001 ). Due to their different charac-
teristics they are categorized into different 
classes. The most widely used grading scheme 
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was suggested by the World Health Organization 
(WHO), classifying brain tumors into grades 
from I to IV with increasing malignancy. 
Treatment for brain tumors strongly depends on 
the tumor classifi cation and the rate of progression, 
with treatment options ranging from surgical 
resection to radiation therapy, chemotherapy and/
or anti-angiogenic therapy. 

 Brain tumors are commonly diagnosed by 
neuro-imaging procedures, ideally by magnetic 
resonance imaging (MRI) (DeAngelis  2001 ). 
There is a variety of imaging sequences that 
 provide the possibility to vary tissue contrast, thus 
highlighting different pathological or healthy 
 tissue compartments. The most relevant MRI 
sequences in clinical practice of brain tumor 
imaging incorporate T 1 -weighted images, T 1 - 
weighted images with contrast enhancement 
 (usually Gadolinium-DTPA), T 2 -weighted images 
and T 2Flair  images (Drevelegas and Papanikolaou 
 2011 ). Although imaging is very powerful and 
important in brain tumor diagnosis and treatment 
planning, even advanced imaging methods may 
fail in the delineation of the complete extent of the 
actual tumor.  

    Medical Image Segmentation 

 Medical images must be processed and the relevant 
information has to be extracted in order to provide 
useful information to the neuroradiologist and 
the clinician. This information contains tumor 
location and size, including a precise delineation 
of the tumor boundaries, but also the location of 
healthy tissues and subcortical structures sur-
rounding the tumor, which is of relevance for 
radiotherapy and neurosurgery. Medical image 
segmentation (Pham et al.  2000 ) aims at dividing 
an image into several different compartments. 
These compartments can be chosen according to 
structures of interest or tissue types. In today’s 
clinical practice, the most common approach is to 
perform manual segmentation by drawing the 
outline of the structure or tissue of interest on the 
patient image. The drawback of this approach is 
that it is very time-consuming, especially for 
3D images, and it also lacks in reproducibility 

(Mazzara et al.  2004 ). Therefore, automatic 
methods to segment tumor-bearing brain images 
are promising, because they can signifi cantly 
reduce segmentation time during post-processing 
and also offer better reproducibility with respect 
to their objectiveness. 

 Automatic segmentation methods for tumor- 
bearing brain images usually require some pre- 
processing, which may include skull-stripping 
(Speier et al.  2011 ) and the alignment of sequen-
tial or multi-modal images in a common frame 
of reference by image registration (Mang et al. 
 2008 ). The current segmentation methods for 
brain tumor images can be roughly divided into 
two different categories. On the one hand, there 
are methods that operate on multi-modal images 
and on the other hand, there are methods which 
operate on preselected mono-modal sequences 
only. Multi-modal approaches are commonly 
based on classifi cation methods and consider 
several MRI modalities simultaneously (e.g. 
Bauer et al.  2011b ). They are good at outlining 
the tumor including its sub-compartments, i.e. 
necrotic tissue, enhancing lesions and edema. 
These methods are not further discussed in this 
article. On the other hand, mono-modal 
approaches for segmentation of tumor-bearing 
brain images often rely on atlas registration. 
These methods, commonly referred to as “atlas- 
based segmentation”, excel at delineating small 
healthy structures surrounding the tumor. 
Different approaches for atlas-based segmenta-
tion of tumor-bearing brain images will be 
 discussed in more detail in the following sec-
tions. We intend to provide a short review and 
categorization of the state of the art of atlas-
based segmentation of tumor-bearing brain 
images and also discuss some of our own 
research in more detail.   

    Atlas-Based Segmentation 
of Tumor-Bearing Brain Images 

    Clinical Requirements 

 Atlas-based segmentation has been shown to be 
more suitable for delineating healthy tissues and 
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structures around the tumor than for segmenting 
the tumor itself. Therefore, its most important 
application comes from neurosurgical or radio-
therapy planning, where manual delineation of the 
tissues and structures at risk for damage is cur-
rently state of the art. To make the transition from 
the current manual segmentation to a fully auto-
matic atlas-based segmentation in a clinical envi-
ronment, the methods have to fulfi ll certain 
requirements. These include proven accuracy and 
robustness of the segmentation result, but also a 
limit on the maximum computation time of the 
algorithm. Computation time is crucial for the pro-
ductive use of a method in daily clinical practice. 
Another important aspect is the user- friendliness 
of the tool provided: Physicians are unlikely to 
make routine use of a new method unless it is easy 
to use and well-understood, to rely on it for mak-
ing clinical decisions. Additionally, it would be 
useful if the chosen segmentation method is able 
to handle a large variety of different brain tumors, 
including multifocal lesions, without requiring too 
much user intervention.  

    The Basics of Atlas-Based 
Segmentation 

 Atlas-based segmentation performs implicit seg-
mentation by registering an atlas to the patient 
image and propagating the atlas labels (Cabezas 
et al.  2011 ). In general, the method requires an 
atlas and a transformation model for the registra-
tion. An atlas consists of an anatomical image and 
the segmentation label map for the structures of 
interest. There are a number of publicly available 
single-subject atlases or average atlases derived 
from multiple subjects; one recent example was 
described by Rohlfi ng et al. ( 2010 ). The transfor-
mation model defi nes how the atlas is aligned with 
the patient image. Most authors follow a two-step 
procedure for this alignment, by fi rst performing a 
rough registration of both images with an affi ne 
transformation model and then doing a refi ned 
non-rigid registration for a more precise align-
ment of both images (Zitova and Flusser  2003 ). 
Image alignment is usually performed by using an 
intensity-based cost function, which is iteratively 

 minimized with a dedicated optimizer. Finally, the 
atlas label map can be transformed and warped to 
the patient image to be overlaid on it, using the 
transformation parameters obtained from the 
alignment of the anatomical images. This provides 
an implicit segmentation of the patient image. 
In the case of image analysis for brain tumor stud-
ies, atlas- based segmentation is mostly applied 
on high- resolution isotropic T 1 -weighted or 
 T 1 -contrast-enhanced (CE) MR images. 

 The major challenge in atlas-based segmenta-
tion of tumor-bearing brain images is the missing 
correspondence between healthy atlas image 
and pathological patient image. A number of 
approaches have been suggested to circumvent 
this problem. They can be broadly separated into 
approaches which are purely registration-based 
and approaches that employ a biomechanical 
tumor-growth model for establishing initial cor-
respondence between both images, before a fi nal 
non-rigid registration step performs a refi ned 
alignment of brain structures.  

    Purely Registration-Based 
Approaches for Atlas-Based 
Segmentation 

 The simplest solution is to use standard registra-
tion methods without considering the fact that the 
patient image has been distorted by the presence 
of a tumor. Isambert et al. ( 2008 ) delineated 
organs at risk in a clinical radiotherapy context 
by registering a standard brain atlas to the patient 
image using multi-affi ne block-matching. 
Figure  14.1  shows an example of their automatic 
delineation in green of the optic nerves, eyes, 
brain stem and cerebellum for one patient, 
together with a manually defi ned ground truth in 
red. Deeley et al. ( 2011 ) combined multi-affi ne 
and non-rigid registration with a fi nal level-set 
refi nement for the segmentation of brain struc-
tures in the presence of space-occupying lesions.

   Brett et al. ( 2001 ) were among the fi rst to 
explicitly address the problem of missing cor-
respondence in registration of tumor images. 
They suggested masking the cost function of a 
combined affi ne and non-rigid registration method. 
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For this, a manual pre-segmentation of the 
lesion was required and could be used as a 
mask for the similarity criterion during the reg-
istration. A similar approach was chosen by 
Stefanescu et al. ( 2004 ). A confi dence map 
with zero confi dence for all voxels inside the 
pre-segmented tumor mask was used for the 
similarity metric during the registration pro-
cess. Additionally, adaptive regularization was 
allowed in different tissue regions. 

 Dawant et al. ( 2002 ) placed small tumor seeds 
in the atlas at the patient’s approximate tumor 
location. Then, a non-rigid registration was 
 performed, which simultaneously deformed the 
seeds in the atlas to approximately match the 
 pre- segmented patient tumor. Commowick    et al. 
( 2005 ) employed statistical measures of anatomi-
cal variability for guiding the regularization 
 during the registration process, where regions of 
low variability were more strongly regularized 
and regions of high variability, like tumor regions, 
could deform more. Chitphakdithai and Duncan 

( 2010 ) used an indicator map to model different 
correspondence assumptions for various tissue 
classes. Registration was regarded as a maximum 
a posteriori (MAP) problem and solved in an 
expectation maximization (EM) framework, 
whereas the probability term of the transforma-
tion could be seen as a similarity metric. 

 A different idea is to incorporate a lesion 
model directly into the registration method, 
which allows for a decoupling of the deforma-
tions due to tumor growth and inter-subject varia-
tions. In this direction, Bach-Cuadra et al. ( 2004 ) 
suggested a model of lesion growth for atlas- 
based segmentation of tumor-bearing brain 
images. To this end, a simplistic radial lesion 
growth model was incorporated into a Demons- 
based non-rigid registration method. The lesion 
growth model modifi ed a healthy atlas and 
adapted it to the tumor-bearing patient image. 
Despite having two distinct deformation models, 
this method relied on registration models only 
and did not include any kind of bio-mechanical 

  Fig. 14.1    Automatic (in  green ) and manual (in  red ) delineation of brain organs at risk in radiotherapy. The segmented 
structures include optic nerves, eyes, brain stem and cerebellum (From Isambert et al. ( 2008 ))       
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tumor-growth simulation. Later, Bach-Cuadra 
et al. ( 2006 ) from the same group improved their 
previous method by replacing the SSD-based 
Demons registration algorithm with an optical 
fl ow method employing the more robust mutual 
information similarity metric, which allowed 
them to drop the assumption of a linear intensity 
correspondence relation between the two images. 
Niethammer et al. ( 2011 ) proposed a metamor-
phosis model, which combined two distinct 
deformations in order to jointly estimate a defor-
mation in space and a change in image appear-
ance. A global geometric deformation was 
employed to model changes in image appearance 
and local matching for considering the tumor was 
based on an image composition model in an 
LDDMM framework.  

    Methods Combining Tumor Growth 
Modeling with Registration for 
Atlas-Based Segmentation 

 Another idea to circumvent the problem of a 
missing correspondence between the atlas image 
of healthy individuals and the pathological 
patient image is to seed the atlas with a tumor 
before applying the non-rigid registration. Most 
of the underlying approaches make use of a bio- 
mechanical tumor-growth model that simulates 
patient-specifi c tumor growth in the atlas image, 
and they fi nally apply a standard non-rigid regis-
tration method to the modifi ed atlas image. 

 Kyriacou et al. ( 1999 ), the fi rst ones to suggest 
this type of approach, assumed a uniform strain 
of the tumor and non-linear elastic behavior of 
the surrounding tissues. In a fi rst step, they shrank 
the tumor in the patient image to obtain a simu-
lated healthy patient image. Then, the tumor 
shrinkage process was inverted by performing 
tumor growth on the registered atlas using a 
regression method. This allowed them to obtain 
a patient-adapted atlas including pathology in a 
fi nal step. Mohamed et al. ( 2006 ) grew the tumor 
in the atlas according to the pathological patient 
image, instead of shrinking the tumor fi rst. The 
fi nal adaptation of the modifi ed atlas to the 
patient image was achieved with a non-rigid 

 registration method. To handle the signifi cant 
computational cost of the tumor growth model-
ing in 3D, they employed an approach based on a 
statistical model using principal component anal-
ysis (PCA). For each available case, they esti-
mated the most likely parameters and applied the 
deformation using the pre-built statistical model. 
Zacharaki et al. ( 2008 ) improved this approach 
by implementing a multi-resolution framework 
for registration of brain tumor images. In their so- 
called ORBIT method, they also used a statistical 
model of tumor-induced deformation, but they 
embedded it into a hierarchical framework for 
parameter optimization. Local information was 
incorporated into the tumor growth model and 
the registration methodology was improved. In a 
further step, the same group improved their tumor 
growth model compared to the previous method 
(Zacharaki et al.  2009 ). They dropped the need 
for a simplifi ed PCA-based tumor growth model 
while still achieving computational effi ciency. To 
this end, they employed a piecewise Eulerian 
tumor mass-effect simulator with a uniform 
outward- pushing pressure model for the bulk 
tumor. Parameter optimization was parallelized 
for further speed improvements. 

 Recently, researchers from the same group 
built upon the previous methods by making 
improvements to the tumor growth model. 
Instead of considering only bio-mechanical mass 
effects with a simplifi ed pressure model, they 
proposed a more sophisticated coupled physio- 
mechanical model. In GLISTR, Gooya et al. 
( 2011a ), employed a diffusion–reaction model 
for tumor growth, which was coupled with an 
Eulerian fi nite element method (FEM) for simu-
lating the mass effect. They operated on multi- 
sequence images to obtain a probability map of 
the different tissue classes using classifi cation 
techniques. In the atlas, a patient-specifi c tumor 
was grown and a Demons-like algorithm was 
fi nally used for the atlas-to-patient transforma-
tion. For this, the tissue probability map output 
from the classifi er was used in the cost function. 
The process was formulated as an EM problem, 
which jointly estimated tumor growth parameters 
and the spatial transformations to adapt the atlas 
to the patient image. This resulted in a large 
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optimization problem, which had to be solved. In 
a next step, Gooya et al. ( 2011b ) dropped the 
requirement for pre-classifi cation and proposed a 
joint segmentation and registration model, which 
also included tumor growth. This was again for-
mulated in an EM framework for joint estimation 
of tumor growth parameters and the deformation 
fi eld for registration. The posterior tissue proba-
bilities, which had been derived from the 
deformed atlas, yielded the segmentation of 
the patient image. 

 Our own research was inspired by methods 
which suggested combining tumor-growth mod-
eling for the tumor mass effect and the establish-
ment of initial correspondence between atlas and 
patient image with advanced non-rigid registra-
tion. In our method for atlas-based segmentation 
of tumor-bearing brain images, we explored two 
different lines of research: On the one hand, we 
worked on a simplistic but fast method for atlas- 
based segmentation, and on the other hand, we 
explored a more sophisticated but computationally 
more demanding approach. 

 For the simplistic but fast approach, in Bauer 
et al. ( 2011a ), we developed a method, that 
segmented the healthy tissues surrounding the 
tumor in a brain image by atlas-based segmenta-
tion. These tissues included cerebrospinal fl uid 
(CSF), gray matter (GM) and white matter (WM). 
The method used a simplistic but computation-
ally fast bio-mechanical tumor growth method to 
fi rst grow a patient-specifi c tumor in the atlas and 
then deform the modifi ed atlas to match the 
patient image using a non-rigid Demons registra-
tion method. We relied on a pre-segmentation of 
the tumor as an input and performed automatic 
skull-stripping in a pre-processing step. Then, we 
aligned the atlas to the patient image using an 
affi ne transformation model. From there, we 
defi ned a tumor seed in the atlas which was 
located in the center of mass of the patient tumor. 
Subsequently, a mesh-free method based on 
Markov Random Fields (MRF) was used for 
modeling the tumor-mass effect. We chose a 
radial expansion model which was propagated by 
an MRF on the deformation fi eld and which was 
bio-mechanically justifi ed because it considered 
the Young’s modulus of different brain tissues 

during tumor expansion. Tumor expansion was 
formulated as an energy minimization problem in 
an MRF context which was solved using the iter-
ated conditional modes (ICM) algorithm. The 
ICM algorithm had the advantage that it could be 
parallelized very easily and it was implemented 
on a massively parallel graphics processing unit 
(GPU); this led to signifi cant speed improve-
ments. After tumor growth modeling, the fi nal 
adaptation of the modifi ed atlas to the patient 
image was done using an ITK implementation 
(Ibanez et al.  2005 ) of the Diffeomorphic Demons 
non-rigid registration method (Vercauteren et al. 
 2009 ). Figure  14.2  illustrates the pipeline. A 
tumor seed was automatically selected in the cen-
ter of mass of the patient tumor and the tumor 
was grown in the atlas, deforming the surround-
ing tissues, before the fi nal non-rigid registration 
was applied. The results were analyzed on four 
T 1 -weighted images from the ContraCancrum 
database (Marias et al.  2011 ) and four syntheti-
cally generated brain tumor images with a 
 well- defi ned ground truth (Prastawa et al.  2009 ). 
Quantitative evaluation was performed using 
the Dice similarity coeffi cient, which measures 
the overlap with the ground-truth segmentation. 
The Dice coeffi cient can range from 0 to 1, with 
0 indicating no overlap and 1 indicating perfect 
overlap. The algorithm achieved Dice coeffi -
cients between 0.7 and 0.82 for the relevant tissue 
CSF, GM and WM within a total computation 
time of less than 30 min on a GPU.

   For the biophysically more realistic approach, 
in Bauer et al. ( 2012 ), we explored a computa-
tionally more demanding method for multi-scale 
tumor growth modeling in atlas-based segmenta-
tion of tumor-bearing brain images. We chose the 
same pipeline as in the previous method that 
included automatic skull-stripping of the patient 
image, affi ne registration of the atlas, seeding the 
atlas with a physically realistic tumor seed in the 
center of mass of the patient tumor, tumor growth 
simulation to model the tumor mass effect, and 
fi nal non-rigid registration. The difference was 
that, in this case, we replaced the simplifi ed 
purely bio-mechanical tumor growth model with 
a more sophisticated tumor growth model which 
considered multiple scales ranging from the 
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microscopic cellular level up to the macroscopic 
bio-mechanical level. To this end, a discrete- 
entity, discrete-event cellular-level based onco-
simulator (Stamatakos et al.  2010 ) focusing on 
biological phenomena like cell-cycling and apop-
tosis was coupled with a bio-mechanical stress/
strain simulation (May et al.  2011 ) which could 
provide pressure gradient information. Since the 
limit of applicability of the standard Lagrangian 
formulation of structural mechanics was reached 
under large tumor-induced deformations, the 
linear- elastic model was solved in an Eulerian 
implementation of FEM. Thus, the calculation 
was performed on a fi xed geometrical mesh and 
material properties were advected to neighboring 
elements upon deformation. Furthermore, this 
allowed for operating directly on the voxel mesh 
obtained from the image, eliminating the need for 
complex mesh generation procedures. The cell 
simulator required information on the direction 

into which new tumor cells would spread. This 
direction could be decided based on the pressure 
of the surrounding tissues. The pressure was 
obtained from the mechanical simulator which in 
turn required information about the expansion of 
each geometrical cell. This was calculated from 
the cellular proliferation model. The direction of 
least pressure  d    was calculated based on the neg-
ative gradient

  

d = -
Ñ
Ñ

p

p
   

whereas the pressure  p    was given in terms of the 
trace of the stress tensor  ss   . A linear elastic model 
with Young’s modulus  E    and Poisson ratio  u    
served as the governing physical law for the non-
uniform stress distribution. With this approach, the 
tumor was grown in the atlas until the approximate 
volume of the patient tumor was reached, and the 

  Fig. 14.2    Results of atlas-based tissue segmentation 
illustrated on one axial slice of a patient image.  Top row 
left  to  right : patient image, seeded atlas after affi ne regis-
tration, deformed atlas after tumor growth.  Bottom row 

left  to  right : modifi ed atlas after fi nal non-rigid registra-
tion, tissue checkerboard of fi nal result and the magnitude 
of the displacement fi eld resulting from the tumor mass 
effect simulation (From Bauer et al. ( 2011a ))       
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fi nal non-rigid Diffeomorphic Demons  registration 
(Vercauteren et al.  2009 ) was applied subse-
quently. Due to the enormous computational 
requirements of the multi-scale tumor growth 
model, simulation was performed on a coarse ver-
sion of the atlas only. Figure  14.3  shows results for 
this approach on one patient image, including the 
magnitude of the displacement fi eld. It can be 

inferred from the displacement fi eld that this 
approach was able to account for the effect of necro-
sis which occurred in the tumor center. This was 
achieved thanks to the coupling of a cellular prolif-
eration model with a bio-mechanical mass effect 
model. The method was evaluated on four synthetic 
datasets (Prastawa et al.  2009 ) and four real patient 
T 1 - weighted datasets (Marias et al.  2011 ) with Dice 

  Fig. 14.3    Results of atlas-based segmentation on one 
slice of a patient image.  Top row : deformed atlas label 
map (CSF, GM, WM, tumor) after the fi nal tumor growth 
modeling step.  Center row : magnitude of the displace-
ment fi eld in the fi nal tumor growth simulation step.  Last 

row : atlas label image after tumor growth and non-rigid 
registration. This label map forms the segmentation of the 
patient image. All images are shown in axial, coronal and 
sagittal view (From Bauer et al. ( 2012 ))       
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similarity coeffi cients ranging from 0.56 to 0.8 
for the relevant tissues. Computation time was 
between 10 and 36 h depending on the size of the 
patient tumor.

   Currently, we are exploring ways to inte-
grate all the information available from clini-
cal multimodal image acquisition protocols 
for further improving and automatizing atlas-
based segmentation of tumor-bearing brain 
images Bauer et al. ( 2013 ). To this end, we are 
fi rst performing a fully automatic segmentation 
of the tumor and its different layers based on 
the multimodal classifi cation method presented 
in Bauer et al. ( 2011b ). This serves as prior 
information for an atlas-based segmentation 
approach similar to the one presented in Bauer 
et al. ( 2012 ). The method allows us to segment 
not only tissues, but also subcortical structures. 
This could have important implications for 
planning in radiotherapy or neurosurgery.   

    Discussion and Outlook 

 Atlas-based methods for segmentation of tumor- 
bearing brain images usually operate on mono- 
modal high-resolution isotropic T 1 -weighted 
magnetic resonance images. They can be broadly 
classifi ed into methods employing standard reg-
istration models and methods which combine stan-
dard registration with patient specifi c tumor- growth 
modeling. Both approaches have their advantages 
and disadvantages: While pure registration methods 
are in general faster and more versatile, inte-
grated simulation and registration methods are 
generally more realistic and accurate. After hav-
ing moved from purely bio- mechanical tumor-
growth simulation models for establishing initial 
correspondence between atlas and patient image 
to more sophisticated coupled diffusion-bio-
mechanics or coupled cellular-bio- mechanics 
models, an obvious next step would be to inte-
grate all three levels of complexity to model 
tumor behavior. These levels would include the 
microscopic level for modeling cell proliferation, 
the macroscopic level for modeling the diffusion 
of cancer cells along the fi ber directions in 
the brain and fi nally the bio-mechanical level 

modeling the tumor mass-effect, as initially 
 proposed in Marias et al. ( 2011 ). Additionally, it 
would be interesting to see if additional prior 
knowledge from multimodal structural images 
could be incorporated in a meaningful way in 
order to allow for better segmentations and more 
accurate predictions. Another option would be to 
rely on crisp multi-channel atlases similar to 
(Prastawa et al.  2009 ) to increase the amount of 
prior information obtained from the atlas. 

 However, from the clinical perspective, a 
major problem of most current approaches is still 
the tremendous computational requirements, 
which are mostly due to the multi-scale tumor 
growth models employed in atlas-based segmen-
tation. This is also the main reason why most of 
the current methods are in favor of pure research 
explorations so far and will not reach routine 
clinical use before signifi cant improvements in 
computational speed are being made. In daily 
practice, computation times on the order of a few 
minutes at most are required. 

 Validation is another critical issue. It is doubt-
ful whether the currently used global evaluation 
schemes that mostly measure volumetric overlap 
of individual structures, are the best choice. 
Especially in neurosurgery and radiotherapy, it is 
of utmost importance to accurately delineate 
healthy tissues and subcortical structures in 
close proximity of the tumor tissue instead of 
more distant tissues and structures; but so far 
there exists no well-accepted evaluation method 
to make this distinction.     
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